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Abstract: This paper introduces a new n-dimensional associative and
commutative, but non-distributive, algebra. We define the spatial opera-
tor sj that manipulates numbers in a multidimensional number-space
(hyper-complex) according to the spatial angle sθ, a tuple of angles

s(θ1,θ2, . . .). The spatial number, which is expressed symbolically as es jsθ ,
belongs to both the additive and multiplicative Abelian groups. They are
non-distributive in multiplication with respect to addition, thus form-
ing a non-distributive ring. Spatial numbers could have applications
in vector algebra allowing the algebraic product of two vector quanti-
ties. Furthermore, they could be of interest in physics, and towards that
purpose, I present a novel multi-dimensional solution of the wave equa-
tion that describes a spherical wave object whose centre propagates at a
velocity c in a vector space.

This paper introduces the spatial numbers of infinite dimensionality

esj sθ = j0 cosθ0 cosθ1 cosθ2 . . .

+ j1 sinθ0 cosθ1 cosθ2 . . .

+ j2 sinθ1 cosθ2 . . .+·· ·+ jk sinθk

or

r esj s(θ1,θ2,θ3,...,θk ) =

r

(
j0

k∏
z=1

cosθz +
k∑

x=1

(
jx sinθx

k−x−1∏
y=−1

cos
(
θ(k−y)

)) )
(1)

where esj sθ is a symbolic representation for consecutive orthogonal rotations the
result being a multidimensional number, sj is the spatial operator, sθ is the spatial
angle defined by a tuple of angles sθ = s(θ1,θ2,θ3, . . .θk ), and jn is the spatial unit
orthogonal to all other jm , 0 ≤ m ≤ k and m ̸= n. The spatial number esj sθ could
be viewed as a hypercomplex number. For a spatial number of rank k, the angles
θ1,θ2, . . .θk are defined, and θ(l>k) = 0. The expansions to rank three are:
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Symbol Description
R The field of real numbers
e A symbol and not the natural number e = 2.71828. . .
i The imaginary unit number, or imaginary operator.
C The field of complex numbers z = r eθ.

sj The preceding subscript ‘s’ indicates a spatial ‘thing’, which is either
the spatial constructor sj or a spatial angle sθ (see below). The
spatial constructor is characterised by sj2 = −1, and it implies a
number with dimensionality.

jn The spatial constructor sj implies a multi-dimensional number
space  whose axes we label, and which are defined by the spatial
units j0, j1, j2, j3, . . ., with j0 = 1.

 , k , [ ] An Euclidian spatial-number space  , each axis is labelled by the
associated spatial unit.  can also be expressed by enclosing the
spatial units in double struck square brackets k = [ j0, j1, j2, . . . jk ].

sθ, s() The spatial angle sθ defined as a tuple consisting of many rotation
angles s(θ1,θ2,θ3, . . .), each towards an axis jn which is orthogonal
to all previous axes jm and 0 ≤ m < n. (sθ is pronounced as spatial
theta.)

k
sθ The preceding superscript ‘k’, usually a number, limits the rank

of a spatial variable to ’k’. E.g. 3
sθ = s(θ1,θ2,θ3). Similarly k

sj ⇒
( j0, j1, j2, . . . jk ). (An angle θ0 does not exist.)

V A non-distributive ring of spatial numbers v = r esj sα.
å The circle accent (reminding one of spheres) is an optional nota-

tion when one wishes to emphasise that the number is a spatial
number, e.g. å = esjsθ .

kå The rank of a spatial number is predetermined, e.g. 2å = j0a0 +
j1a1 + j2a2.

⊕, ⊖ The binary operators for adding, or subtracting, orthogonal rota-
tions

⊗ The binary operator for multiplying orthogonally rotated quanti-
ties.

NOTE The semantics rotate and rotation in conjunction with numbers is best
explained as follows: Using complex numbers as an example we have no
problem in understanding the complex plane as a two dimensional number
plane. The number z = r eiθ could be described as rotating the number r off
the real axis towards the imaginary axis by an angle theta, that is we are rotating
a line defined by zero and r both on the real axis. After this rotation we have
z = r cosθ+ i r sinθ.
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k = 0 : esj0 = 1

k = 1 : esj s(θ1) = j0 cosθ1 + j1 sinθ1

k = 2 : esj s(θ1,θ2) = j0 cosθ1 cosθ2 + j1 sinθ1 cosθ2 + j2 sinθ2

k = 3 : esj s(θ1,θ2,θ3) = j0 cosθ1 cosθ2 cosθ3

+ j1 sinθ1 cosθ2 cosθ3

+ j2 sinθ2 cosθ3 + j3 sinθ3

These numbers remind one of spherical coordinates. E.g. for rank k = 2, θ1

is the azimith and θ2 the elevation as is the case in the Earth’s mapping that uses
longitude and latitude, but unlike in spherical coordinate systems, the angles are
not limited to a specific range.

Theorem 1: The spatial numbers v̊ = r esj sθ belong to both the additive and
multiplicative Abelian groups, and form a non-distributive ring, which we sym-
bolise with V. Hence, an associative and commutative, but non distributive,
n-dimensional algebra emerges.

This algebra, although severely limited could have speciality applications. Map-
ping the spatial number into a vector space [ j0, j1, j2] = [X,Y,Z] allows the algebraic
products of vector quantities. In physics they could be used to find novel multi-
dimensional solutions to the wave equation as elucidated in a later section, which
could help in describing elementary particles.

A spatial number is expressed in the Euler form as

v̊ = r esj sθ

where r ∈ R, sj is the spatial constructor, and sθ = s(θ1,θ2,θ3, . . .). The product

sjsθ expands to

sjsθ = j1θ1 ⊕ j2θ2 ⊕ j3θ3 ⊕·· ·⊕ jkθk (2)

where j1θ1 means rotate from the root axis j0 towards the j1-axis by θ1, and ⊕ j2θ2

means rotate the result of the previous rotation from the j0–j1 plane towards
j2-axis by θ2, etc. Therefore

v̊ = esj sθ = e j1θ1⊕ j2θ2⊕ j3θ3⊕···⊕ jkθk (3a)

= e j1θ1 ⊗e j2θ2 ⊗e j3θ3 ⊗·· ·⊗e jkθk (3b)

where each term e jnθn is evaluated like a complex number with a ranked imagi-
nary number jn . The operators ⊗, and ⊕ are used only in the above context to
explain the relation between the Euler and rectilinear forms of spatial numbers.
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The orthogonal product e j1θ1 ⊗e j2θ2 is defined by

e j1θ1 ⊗e j2θ2 = ( j0 cosθ1 + j1 sinθ1)⊗ (cosθ2 + j1 sinθ2) (4a)

= ( j0 cosθ1 + j1 sinθ1)(cosθ2)+| j0 cosθ1 + j1 sinθ1|( j1 sinθ2) (4b)

= ( j0 cosθ1 cosθ2 + j1 sinθ1 cosθ2)+ j1 sinθ2 (4c)

and we note that in (4b) the j1 sinθ2 term multiplies with the absolute value∣∣ j0 cosθ1 + j1 sinθ1
∣∣ or generalised

esj ksθ⊗e j(k+1)θ(k+1) = esj ksθ cosθ(k+1) +
∣∣esj ksθ

∣∣( j(k+1) sinθ(k+1)) (5a)

= esj ksθ cosθ(k+1) + j(k+1) sinθ(k+1) (5b)

Let å = ra esj sα and b̊ = rb esjsβ. Analogous to complex numbers, the product of
two spatial numbers

åb̊ = rarb esj(sα+sβ) (6)

where (sα+ sβ) = s

(
α1 +β1,α2 +β2,α3 +β3, . . .

)
i.e. the simple summing of the

angles. The sum of two spatial numbers is over the rectilinear coefficients

å + b̊ = j0(a0 +b0)+ j1(a1 +b1)+ j2(a2 +b2)+ . . . (7)

Unfortunately, the distributivity over multiplication is lost for rank k ≥ 2

( kå + kb̊) kc̊ ̸= kå kc̊ + kb̊ kc̊ if k ≥ 2 (8)

Proof: For above theorem we require (6),(7) and (8) to be true.

Associativity and commutativity of multiplication: To multiply two complex
numbers we need one rule i2 =−1, or we can use the Euler rule of summing the
angles eiαeiβ = eiα+β. Similarly, to obtain the product of two spatial numbers,
we can simply sum the spatial angles esj sαesj sβ = esj (sα+sβ), or we can use a
procedure using a mix of the Euler and Euclidean forms and the following rules:

j2
0 = j0 = 1 (9a)

j2
1 =− j0 =−1 (9b)

j2
(k+1) =− esj ksθ =−esj s(θ1,θ2,θ3, ...θk ) (9c)

j3
(k+1) =− j(k+1) therefore j(k+1) esj ksθ = j(k+1) (9d)

sj2 =−1 (9e)
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We explain rule (9c) by using (5)

esj ksθ⊗e j(k+1)π/2 = esj ksθ sinπ/2+ ∣∣esj ksθ
∣∣ j(k+1)cosπ/2

= j(k+1)

As per definition j(k+1) can only exist if kv̊ = esj ksθ exists. We are rotating a spatial
number kv̊ off its kth-dimensional plane towards the (k +1)th-axis. A 90o rotation
results in a number with just a j(k+1) component and all other jn components,
0 ≤ n ≤ k, being zero. If the rotation is 180o then kv̊ is negated.

That multiplication is a simple addition of the rotation angles also needs to
be demonstrated in the cartesian form: Let â and b̂ be unit spatial numbers with
rotation angle tuples s(α1,α2, . . .αn) and s

(
β1,β2, . . . ,βn

)
respectively. We express

â and b̂ as a mix of the Euler form and rectilinear form and demonstrate:

k = 0 : âb̂ = j2
0 = 1 (10)

k = 1 : âb̂ = esj s(α1) esj s(β1) = esj s(α1+β1) (11)

k = 2 : âb̂ = esj s(α1+α2) esj s(β1+β2) (12)

= (esj s(α1) cosα2 + j2 sinα2) (a)

× (esj s(β1) cosβ2 + j2 sinβ2) (b)

= esj s(α1+β1) cosα2 cosβ2 (c)

+ j2 esj s(α1) cosα2 sinβ2 (d)

+ j2 esj s(β1) sinα2 cosβ2 (e)

+ j2
2 sinα2 sinβ2 (f)

= esj s(α1+β1) cos
(
α2 +β2

)+ j2 sin
(
α2 +β2

)
(g)

= esj s(α1+β1,α2+β2) (h)

therefore by induction:

k = n : âb̂ = esj s(α1+β1,α2+β2,...αn+βn) (13)

The Equations (10 and 11) need no comment, (11) are the complex numbers.
Equation (12) is the product of two spatial numbers of order two (or three di-
mensions) and (a) and (b) expresses the product as a mix of spatial Euler and
rectilinear form. This expands into four parts (c) though (f). We combine parts
(c) and (f) and we note by Rule (9b) for the product âb̂ that j2

2 = −esj s(α1+β1),

thus parts (c) and (f) have reduced to esj s(α1+β1) cos
(
α2 +β2

)
the first term in (g).

Examining parts (d) and (e), the terms esj s(α1) and esj s(β1) only indicate a posi-
tion from which a rotation towards j2 took place and have no influence on the
value a2 j2 and b2 j2 respectively, thus both esj s(α1) and esj s(β1) can be replaced
by their respective absolute value, which in both cases is one. Thus combining
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parts (d) and (e) yields the second term j2 sin
(
α2 +β2

)
in (g), and trigonometrical

reduction yields (h) i.e. the product âb̂ in the spatial Euler notation.

We have now shown that the product of two spatial numbers is indeed the sum
of the spatial angles; thus the associativity and commutativity of multiplication is
given.

Associativity and commutativity of addition is given; trivial by addition of the
rectilinear coefficients and elucidated in Appendix A.

Additive and multiplicative identity: Trivial; the additive and multiplicative
identities are 0 and 1 respectively.

Additive inverses: Trivial; for every kv̊ = esj s(θ1,θ2,...,θk ) there exists a kẘ =
esj s(θ1,θ2,...,θk+π), which yields the sum kv̊ + kẘ = 0, therefore −kv̊ = kẘ .

Multiplicative inverses: Trivial; for every kv̊ = esj s(θ1,θ2,...,θk ) there exists a
kẘ = esj s(−θ1,−θ2,...,−θk ), which yields the product kv̊ kẘ = 1, therefore kv̊−1 = kẘ .

All requirements for both the additive and multiplicative Abelian groups are
satisfied.

Non distributivity of multiplication over addition for rank k ≥ 2: Trivial;
demonstrated by numeric evaluation, and also elucidated in Appendix B.

Integration and differentiation

Of particular interest is to integrate and differentiate the spatial number. The
derivatives and integrals for spatial numbers are basically the same as those for
complex numbers.

d

dsθ

(
sjesj sθ

)
= sjesj sθ and

∫
sjesj sθ dsθ =−sjesj sθ (14a)

d

dt

(
sjesj sθt

)
= sjsθesj sθt and

∫
esj sθt dt =−sjsθ

−1 esj sθt (14b)

But how to evaluate sj or sjsθ? They are not numbers sj is a constructor that
uses the spatial angle sθ. This becomes clear when evaluating the first and second
derivative of ϕ= 2esj sωt = 2esj s(ω1,ω2)t with respect to t , and using trigonometric
expansion formulas.
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d2ϕ

dt 2 = d2

dt 2

(
2j0 cosω1t cosω2t +2j1 sinω1t cosω2t +2j2 sinω2t

)
(15a)

= d2

dt 2

(
j0

(
cos(ω1 −ω2)t +cos(ω1 +ω2)t

)
+ j1

(
sin(ω1 −ω2)t + sin(ω1 +ω2)t

)
+2j2 sinω2t

) (15b)

= d

dt

(
− j0

(
(ω1 −ω2)sin(ω1 −ω2)t + (ω1 +ω2)sin(ω1 +ω2)t

)
+ j1

(
(ω1 −ω2)cos(ω1 −ω2)t + (ω1 +ω2)cos(ω1 +ω2)t

)
+2j2ω2 cosω2t

) (15c)

=−j0
(
(ω1 −ω2)2 cos(ω1 −ω2)t + (ω1 +ω2)2 cos(ω1 +ω2)t

)
− j1

(
(ω1 −ω2)2 sin(ω1 −ω2)t + (ω1 +ω2)2 sin(ω1 +ω2)t

)
−2j2ω

2
2 sinω2t

(15d)

= sj2
s(ω1,ω2)2 2esj s(ω1,ω2)t =−sω

22esj sωt (15e)

= sj2
s(ω1,ω2)2ϕ=−sω

2ϕ (15f)

From Equations (15a) to (15f) we understand that φ describes an undamped
harmonic oscillator in three dimensions, consisting of five sub harmonic os-
cillators in superposition. The last two lines, (15e) and (15f) are short hand
conventions to describe (15d). When working with spatial numbers we can treat
the constructs sj, sjsω and −sω

2 symbolically as numbers as long as we under-
stand the expansion behind these constructs. The expressions sj x or sjsωx, with
x ∈ {R,C}, are meaningless.

To answer the earlier question “how to evaluate sj or sjsθ?” From (14b) and (15c),
and with ϕ= 2esj sωt = 2esj s(ω1,ω2)t we obtain

dϕ

dt
= sjs(ω1,ω2)2esj s(ω1,ω2)t (16a)

=−j0
(
(ω1 −ω2)sin(ω1 −ω2)t + (ω1 +ω2)sin(ω1 +ω2)t

)
+ j1

(
(ω1 −ω2)cos(ω1 −ω2)t + (ω1 +ω2)cos(ω1 +ω2)t

)
+2j2ω2 cosω2t

(16b)

Therefor, it follows that
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d

dsω

(
2esj s(ω1,ω2)

)
= sj2esj s(ω1,ω2) (17a)

=−j0
(

sin(ω1 −ω2)+ sin(ω1 +ω2)
)

+ j1
(

cos(ω1 −ω2)+cos(ω1 +ω2)
)

+2j2 cosω2

(17b)

A multi-dimensional solution to the wave equation.

Spatial numbers allow a novel solution of the wave equation, a second order
partial differential equation of form

c2 ∂
2 W

∂p2 − ∂2 W

∂t 2 = 0 (18)

where in the spatial number form W is a wave structure centred at a position p
in a vector space [XYZ], c the speed at which the wave structure propagates, and
t is time. To solve (18), we need separate time and position components for W,
which is simply achieved by

W=


P(p) =X2(p)

T(t ) = Y2(t )

X(p)Y(t )

(19)

from which quickly follows

c2

X(p)

d2X(p)

dp2 = 1

Y(t )

d2Y(t )

dt 2 =− sω
2

4
(20)

where the right hand term is introduced in anticipation of the desired result. We
also note that W,P,T,X, Y∈V also satisfies (19) and (20). The derivatives are
total as X(p) and Y(t) are independent of one another, but also equal to each
other if and only if

p = po + κ̂ct (21)

where po is some initial position and κ̂ is a unit direction vector. The solutions of
the two second order differential equations using spatial numbers was demon-
strated in (15), hence

X(p) =
p

Aesj sωp/2c+sθo /2 (22a)

Y(t ) =
p

Aesj sωt/2++sθo /2 (22b)
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where sθo is an arbitrary initial condition, and A is an arbitrary constant indepen-
dent of time or position and characterises the wave structure W. All that remains
is to square Y(t ) and taking care of initial conditions to obtain

W= Aesj sωt+sθo (23)

Therefore, in the vector space [XYZ], the wave structure Whas spherical prop-
erties. It is a mathematical object that is described by the wave equation (18)
centred around a point p that propagates with a velocity c.

Appendix A; Associativity and commutativity of addition

Let kå = ra esj s(α1,α2,...,αk ), kb̊ = rb esj s(β1,β2,...,βk ), the sum kå + kb̊ = ks̊ = rs esj s(ϑ1,ϑ2,...,ϑk ). The
equations (A.2) to (A.14) below show that for any kå + kb̊ there exists a rs and s

(
ϑ1,ϑ2, . . . ,ϑk

)
evalu-

ated in terms of ra ,rb ,α1,α2, . . . ,αk and β1,β2, . . . ,βk .

k = 0 : rs = ra + rb (A.1)

k = 1 : ϑ1 = arctan

(
ra sinα1 + rb sinβ1

ra cosα1 + rb cosβ1

)
(A.2)

rs =
√

r 2
a + r 2

b
+2ra rb cos

(
α1 −β1

)
(A.3)

k = 2 : ϑ1 = arctan

(
ra sinα1 cosα2 + rb sinβ1 cosβ2

ra cosα1 cosα2 + rb cosβ1 cosβ2

)
(A.4)

x2′ =
√

r 2
a cos2α2 + r 2

b
cos2β2 +2ra rb cos

(
α1 −β1

)
cosα2 cosβ2

ϑ2 = arctan

(
ra sinα2 + rb sinβ2

x2′

)
(A.5)

rs =
√

x2
2′ + (ra sinα2 + rb sinβ2)2

=
√

r 2
a + r 2

b
+2ra rb

(
cos

(
α1 −β1

)
cosα2 cosβ2 + sinα2 sinβ2

)
(A.6)

k = 3 : ϑ1 = arctan

(
ra sinα1 cosα2 cosα3 + rb sinβ1 cosβ2 cosβ3

ra cosα1 cosα2 cosα3 + rb cosβ1 cosβ2 cosβ3

)
(A.7)

x3′ =
[

r 2
a cos2α2 cos2α3 + r 2

b cos2β2 cos2β3

+2ra rb cos
(
α1 −β1

)
cosα2 cosβ2 cosα3 cosβ3

]1/2

ϑ2 = arctan

(
ra sinα2 cosα3 + rb sinβ2 cosβ3

x3′

)
(A.8)
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x3′′ =
√

x2
3′ + (ra sinα2 cosα3 + rb sinβ2 cosβ3)2

=
[

r 2
a cos2α3 + r 2

b cos2β3

+2ra rb

(
cos

(
α1 −β1

)
cosα2 cosβ2 + sinα2 sinβ2

)
cosα3 cosβ3

]1/2

ϑ3 = arctan

(
ra sinα3 + rb sinβ3

x3′′

)
(A.9)

rs =
√

x2
3′′ + (ra sinα3 + rb sinβ3)2

=
[

r 2
a + r 2

b +2ra rb

{(
cos

(
α1 −β1

)
cosα2 cosβ2 + sinα2 sinβ2

)
×cosα3 cosβ3 + sinα3 sinβ3

}]1/2 (A.10)

k = n : ϑ1 = arctan

(
ra sinα1 cosα2 cosα3 . . .cosαn + rb sinβ1 cosβ2 cosβ3 . . .cosβn

ra cosα1 cosα2 cosα3 . . .cosαn + rb cosβ1 cosβ2 cosβ3 . . .cosβn

)
(A.11)

xn′ =
[

r 2
a cos2α2 cos2α3 . . .cos2αn + r 2

b cos2β2 cos2β3 . . .cos2βn

+2ra rb cos
(
α1 −β1

)
cosα2 cosβ2 cosα3 cosβ3 . . .cosαn cosβn

]1/2

ϑ2 = arctan

(
ra sinα2 cosα3 cosα4 . . .cosαn + rb sinβ2 cosβ3 cosβ4 . . .cosβn

x3′

)
(A.12)

xn′′ =
√

x2
3′ + (ra sinα2 cosα3cosα4 . . .cosαn + rb sinβ2 cosβ3 cosβ4 . . .cosβn )2

...

xn′′...′′ =
√

x2
n′′...′ + r 2

a sin2α2 cos2α3 . . .cos2αn + r 2
b

sin2β2 cos2β3 . . .cos2βn

ϑn = arctan

(
ra sinαn + rb sinβn

x3′′...′′

)
(A.13)

rs =
√

x2
n′′...′′ + (r 2

a sinαn + r 2
b

sinβn )2

=
[

r 2
a + r 2

b +2ra rb

{(
. . .

{(
cos

(
α1 −β1

)
cosα2 cosβ2 + sinα2 sinβ2

)
×cosα3 cosβ3 + sinα3 sinβ3

}
. . .

)

×cosαn cosβn + sinαn sinβn

}]1/2

(A.14)

Appendix B; Non distributivity of multiplication over addition.

Spatial numbers of rank k ≥ 2 are not distributive over multiplication.

k = 0: Distributivity holds; ra rc + rb rc = rc (ra + rb )

k = 1: Distributivity holds; as identical to complex numbers and demonstrated by (A.2),
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which then is simplified by trigonometric reduction to obtain

ϑ1 = arctan

(
ra rc sin

(
γ1 +α1

)+ rb rc sin
(
γ1 +β1

)
ra rc cos

(
γ1 +α1

)+ rb rc cos
(
γ1 +β1

) )
= γ1 +arctan

(
ra sinα1 + rb sinβ1

ra cosα1 + rb cosβ1

)
and from (A.3)√

r 2
a r 2

c + r 2
b

r 2
c +2ra rb r 2

c cos
(
α1 +γ1 − (β1 +γ1)

)= rc

√
r 2

a + r 2
b
+2ra rb cos

(
α1 −β1

)
Therefor ra rc esjs(α1+γ1) + rb rc esjs(β1+γ1) = rc esjs(γ1)

(
ra esjs(α1) + rb esjs(β1)

)
k ≥ 2: Distributivity breaks down with k ≥ 2; evident from (A.5), as

ϑ2 = arctan

(
ra rc sin

(
γ2 +α2

)+ rb rc sin
(
γ2 +β2

)
x2′

)
̸= γ2 +arctan

(
ra sinα2 + rb sinβ2

x2′/rc

)
Therefor

ra rc esj s(α1+γ1,α2+γ2) + rb rc esjs(β1+γ1,β2+γ2) ̸= rc esjs(γ1,γ2)(ra esjs(α1,α2) + rb esjs(β1,β2))
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