A mathematical derivation of the Maxwell equations in vacuum

Anton Lorenz Vrba

Ryde, United Kingdom
November 19, 2022

Presentation to the Harbingers of Neophysics

Copyright © 2022, A.L. Vrba; this work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives" license.

Slide 2: What is a wave? (The d'Alembert wave equation)
Towne ${ }^{1}$ states that the requirement for a physical condition to be referred to as a wave, is that its mathematical representation give rise to a partial differential equation of particular form, known as the wave equation. The classical form

$$
\frac{\partial^{2} w}{\partial p^{2}}-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \quad \text { or } \quad \nabla^{2} w-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 .
$$

was proposed in 1748 by d'Alembert for a one-dimensional continuum. A decade later, Euler established the equation for the three-dimensional continuum.

1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.

Slide 3: A Cartesian reference system

The reference system whose axis are the unit vectors \hat{x}, \hat{y} and \hat{z}

is defined by:

$$
\begin{array}{rrr}
\hat{x} \cdot \hat{y}=0 & \hat{y} \cdot \hat{z}=0 & \hat{z} \cdot \hat{x}=0 \\
\hat{x} \times \hat{y}=\hat{z} & \hat{y} \times \hat{z}=\hat{x} & \hat{z} \times \hat{x}=\hat{y}
\end{array}
$$

Slide 4: New: The Bimodal Wave Equation

Let's define three vectors:

$$
\begin{aligned}
\mathbf{u}=c \hat{\mathrm{u}}(t) & \text { a velocity vector } \\
\mathbf{a}=a \hat{\mathrm{a}}(t) & \text { an activator } \\
\mathbf{r}=r \hat{\mathrm{r}}(t) & \text { and a reactivator }
\end{aligned}
$$

all are functions of time only. They are all orthogonal to each other, hence $\mathbf{u} \cdot \mathbf{a}=0, \mathbf{a} \cdot \mathbf{r}=0$ and $\mathbf{r} \cdot \mathbf{u}=0$. But

$$
\mathbf{r}_{1}=\mathbf{u}_{0} \times \mathbf{a}_{0}, \quad \mathbf{u}_{1}=\mathbf{a}_{0} \times \mathbf{r}_{1}, \quad \mathbf{a}_{1}=\mathbf{r}_{1} \times \mathbf{u}_{1}, \quad \mathbf{r}_{2}=\mathbf{u}_{1} \times \mathbf{a}_{1}
$$

is an infinite series, or sequence.

We require the sequence to continue unaltered indefinitely; that is $\mathbf{u}_{n}=\mathbf{u}, \mathbf{a}_{n}=\mathbf{a}$ and $\mathbf{r}_{n}=\mathbf{r}$, that needs some form of normalisation:

$$
\left\{\mathbf{r}=\mathbf{u} \times \mathbf{a}, \quad \mathbf{u}=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a} \times \mathbf{r}, \quad \mathbf{a}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{r} \times \mathbf{u}\right\}
$$

The solution of the above set of three simultaneous vector equations describes bimodal-transverse waves.

Slide 6: Electromagnetic Bimodal Wave Equation \& Maxwell

Let's map $\mathbf{a} \mapsto \mathbf{B}$ and $\mathbf{r} \mapsto \mathbf{E}$ and we consider one plane $\mathcal{W}(\mathbf{p})$ of an Em-travelling plane wave and where \mathbf{p} defines the position of \mathcal{W}. Such a wave is described (mathematically expressed: $\frac{\mathrm{dsc}}{\mathrm{by}}$) by the solution of $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$, which is a system of three simultaneous vector algebraic equations:

$$
\mathcal{W}(\mathbf{p}) \frac{\mathrm{dsc}}{\mathrm{by}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\begin{array}{lr}
\mathbf{E}=\mathbf{u} \times \mathbf{B} & (\text { activation by } \mathbf{B}) \quad(\mathrm{a}) \\
\mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E} & (\text { vectoring by } \mathbf{B} \times \mathbf{E}) \quad(\mathrm{b}) \\
\mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u} & (\text { (reactivation by } \mathbf{E}) \quad(\mathrm{c})
\end{array}\right\}
$$

Slide 7: Electromagnetic Bimodal Wave Equation \& Maxwell
\mathbf{u} is a velocity vector $\mathbf{u}=c \hat{\mathbf{u}}$, where
$\hat{\mathrm{u}}$ that is, $\hat{\mathrm{u}} \mapsto \hat{\mathrm{u}}(t)$, is a unitless unit vector function of time only, and
$c \quad$ is the speed of light.
\mathbf{B} is the magnetic field $\mathbf{B}=B \hat{\mathrm{~B}}$, and where
$\hat{\mathrm{B}} \quad$ that is, $\hat{\mathrm{B}} \mapsto \hat{\mathrm{B}}(t)$, is a unitless unit vector function of time only, and is orthogonal to $\hat{\mathrm{u}}$ hence $\hat{\mathrm{u}} \cdot \hat{\mathrm{B}}=0$, and
$B \quad$ scales the magnetic field and provides the physical units.
\mathbf{E} is the electric field and (a) gives $\mathbf{E}=c B(\hat{\mathrm{u}} \times \hat{\mathrm{B}})=c B \hat{\mathrm{E}}$, with $\hat{\mathrm{E}}=\hat{\mathrm{u}} \times \hat{\mathrm{B}}$.
\mathbf{p} the position of the origin for \mathbf{u}, \mathbf{B}, and \mathbf{E}; thus $\mathbf{p}=\int \mathbf{u} d t$.

A.L. Vrba

Slide 8: Electromagnetic Bimodal Wave Equation \& Maxwell

Figure 1: Illustrating the vectors used in $\mathcal{W}(\mathbf{p}) \frac{\mathrm{dsc}}{\mathrm{by}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$.

Slide 9: Electromagnetic Bimodal Wave Equation \& Maxwell

$$
\mathcal{W}(\mathbf{p}) \frac{\mathrm{dsc}}{\mathrm{by}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\begin{array}{lr}
\mathbf{E}=\mathbf{u} \times \mathbf{B} & (\text { activation by } \mathbf{B}) \quad(\mathrm{a}) \\
\mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E} & (\text { (vectoring by } \mathbf{B} \times \mathbf{E}) \quad(\mathrm{b}) \\
\mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u} & (\text { (reactivation by } \mathbf{E}) \quad(\mathrm{c})
\end{array}\right\}
$$

$\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ predicts the Maxwell equations in vacuum, that is, $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is the fundamental mathematical explanation for the electromagnetic wave phenomena.

To show that $\mathscr{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is the superordinated mathematical formulation for the Maxwell equations is the task we tackle now:

But, first we need to evaluate the triple vector products $\nabla \times(\mathbf{u} \times \mathbf{B})$ and $\nabla \times(\mathbf{E} \times \mathbf{u})$, which we expand using general vector analytic methods.

$$
\begin{aligned}
& \nabla \times(\mathbf{u} \times \mathbf{B})=\mathbf{u}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{u})-(\mathbf{u} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{u} \\
& \nabla \times(\mathbf{E} \times \mathbf{u})=\mathbf{E}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{E})-(\mathbf{E} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{E}
\end{aligned}
$$

$\nabla \cdot \mathbf{u}=0 \quad$ because c and $\hat{\mathbf{u}}(t)$ are not functions of x, y, and z
$\nabla \cdot \mathbf{B}=0 \quad$ because B and $\hat{\mathrm{B}}(t)$ are not functions of x, y, and z
$\nabla \cdot \mathbf{E}=0 \quad$ ditto, because $\mathbf{E}=\mathbf{u} \times \mathbf{B}$
$(\mathbf{B} \cdot \nabla) \mathbf{u}=0 \quad$ because $\left(B_{x} \frac{\partial}{\partial x}+B_{y} \frac{\partial}{\partial y}+B_{z} \frac{\partial}{\partial z}\right) c \hat{\mathbf{u}}(t)=0$
$(\mathbf{E} \cdot \nabla) \mathbf{u}=0 \quad$ ditto
$(\mathbf{u} \cdot \nabla) \mathbf{B}=$?
$(\mathbf{u} \cdot \nabla) \mathbf{E}=?$

Slide 12: Electromagnetic Bimodal Wave Equation \& Maxwell

$$
\mathbf{u} \cdot \nabla=\frac{\partial}{\partial t} \text { because } \mathbf{u} \cdot \nabla=\frac{\partial x}{\partial t} \frac{\partial}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial}{\partial y}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=\frac{\partial}{\partial t}
$$

and that leaves us with

$$
\begin{aligned}
& \nabla \times(\mathbf{u} \times \mathbf{B})=\mathbf{u}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{u})+(\mathbf{B} \cdot \nabla) \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{B}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times(\mathbf{E} \times \mathbf{u})=\mathbf{E}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{E})+(\mathbf{u} \cdot \nabla) \mathbf{E}-(\mathbf{E} \cdot \nabla) \mathbf{u}=\frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

Applying a 'left and right side' curl operation on $M(\mathbf{u}, \mathbf{B}, \mathbf{E})(\mathbf{a})$ and (c) to obtain

$$
\begin{align*}
& \nabla \times \mathbf{E}=\nabla \times(\mathbf{u} \times \mathbf{B})=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \nabla \times(\mathbf{E} \times \mathbf{u})=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t} \tag{1}
\end{align*}
$$

and on slide 10 we established $\nabla \cdot \mathbf{B}=0$ and $\nabla \cdot \mathbf{E}=0$. Thus we have the Maxwell equations in vacuum if we can show that $c^{-2}=\epsilon_{0} \mu_{0}$.

Slide 14: Electromagnetic Bimodal Wave Equation \& Maxwell
Because, $\quad \nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \quad$ and $\quad \nabla^{2} \mathbf{B}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}=0$
are derived from the Maxwell equations, proves that $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is a new formulation for bimodal-waves as per Towne ${ }^{2}$ (Slide 3)

$$
\mathcal{W}(\mathbf{p}) \frac{\mathrm{dsc}}{\mathrm{by}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\begin{array}{lrl}
\mathbf{E}=\mathbf{u} \times \mathbf{B} & (\text { activation by } \mathbf{B}) & (\mathrm{a}) \\
\mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E} & (\text { (vectoring by } \mathbf{B} \times \mathbf{E}) & (\mathrm{b}) \\
\mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u} & (\text { reactivation by } \mathbf{E}) \quad \text { (c) }
\end{array}\right\}
$$

2 Towne, Wave phenomena.

Slide 15: Properties of Vacuum (Two Assertions)

To prove that $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is also a reformulation of the Maxwell equations, we can take the easy path and simply substitute $c^{2}=$ $1 / \epsilon_{0} \mu_{0}$ in the above. The more difficult path is to assert
a) An elementary EM-wave \mathcal{W} exhibits power h / t^{2}, where h is the Planck constant and $t=1$ second. This requires \mathbf{B} to be an elementary field.
b) This elementary wave transports an electric charge e every one second which is a wave current. (This is nothing new; it is another way of describing the displacement current $\partial \mathbf{E} / \partial t$ that Maxwell had identified in varying electric fields.)

From the definitions (Slide 7) we have $\|\mathbf{B}\|=B$ which we substitute into $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ (b) to obtain

$$
\begin{equation*}
\mathbf{u}=\frac{1}{B^{2}} \mathbf{B} \times \mathbf{E} \tag{2}
\end{equation*}
$$

On the premise that $\mathbf{B} \times \mathbf{E}$ is indicative of the wave action, we multiply (2) by the quantised action h and evaluate the norms

$$
\|h \mathbf{u}\|=\left\|\frac{h}{B^{2}} \mathbf{B} \times \mathbf{E}\right\| \quad \text { to get } \quad h c=\left(\frac{h}{B^{2}}\right)(|\mathbf{B} \| \mathbf{E}|)
$$

Slide 17: Properties of Vacuum

$$
h c=\left(\frac{h}{B^{2}}\right)(|\mathbf{B} \| \mathbf{E}|) \quad \text { gives } \quad h=\left[\frac{h}{l^{4} B^{2} c}\right] l^{4}(|\mathbf{B}||\mathbf{E}|)
$$

after defining an elementary distance $l=c t$, and multiplying and dividing the above-left by l^{4} but that also requires \mathbf{B} and \mathbf{E} to be elementary fields. Here the square brackets indicate the development of a physical constant, which we want to determine by eliminating B and l or rather expressing them in terms of elementary action h and elementary charge e.

Let's define the elementary electromagnetic action as:

$$
h_{e}=\varrho h \quad \text { where } \varrho=1 \mathrm{C} \mathrm{~kg}^{-1} .
$$

Action is momentum times distance, hence

$$
h_{e}=\varrho h=\kappa l e c \quad \text { where } l \text { is the elementary distance, and }
$$ κ is a dimensionless proportionality constant of unknown value scaling lec to the Em-action h_{e}. We can also postulate that the electromagnetic action is proportional to the product of \mathbf{B} and the elementary volume which the wave occupies

$$
h_{e}=\varrho h=\chi l^{3}|\mathbf{B}|
$$

where χ is a constant with units and scaling to be determined.

Slide 19: Properties of Vacuum

Therefore we have $h_{e}=\kappa l e c=\chi l^{3}|\mathbf{B}|$ which gives

$$
|\mathbf{B}|=\frac{\kappa e c}{\chi l^{2}}
$$

and we substitute $|\mathbf{B}|$ from the above into $\left[\frac{h}{l^{4} B^{2} c}\right] l^{4}(|\mathbf{B}||\mathbf{E}|)$ gives

$$
\begin{aligned}
& h=\left[\frac{h}{l^{4} B^{2} c}\right] l^{4}\left(\frac{\kappa e c}{\chi l^{2}}|\mathbf{E}|\right) \quad \text { but, }|\mathbf{E}|=c B \text { which gives } \\
& h=\left[\frac{h}{l^{4} B^{2} c}\right]\left[\frac{1}{\chi}\right] \kappa l^{2} e c^{2} B
\end{aligned}
$$

Slide 20: Properties of Vacuum

Repeating last equation

$$
h=\left[\frac{h}{l^{4} B^{2} c}\right]\left[\frac{1}{\chi}\right] \kappa l^{2} e c^{2} B
$$

We are now in the position to define the expression for

$$
\begin{aligned}
& B=\frac{h}{\kappa l^{2} e} \quad \text { but only if } \\
& 1=\left[\frac{h}{l^{4} B^{2} c}\right]\left[\frac{1}{\chi}\right] c^{2}
\end{aligned}
$$

but only if
$1=\left[\frac{h}{l^{4} B^{2} c}\right]\left[\frac{1}{\chi}\right] c^{2} \quad$ and replacing $B=\frac{h}{\kappa l^{2} e}$ gives
$1=\left[\frac{\kappa^{2} e^{2}}{h c}\right]\left[\frac{1}{\chi}\right] c^{2} \quad$ which requires $\frac{1}{\chi}=\frac{h}{\kappa^{2} e^{2} c}$, hence
$1=\left[\frac{\kappa^{2} e^{2}}{h c}\right]\left[\frac{h}{\kappa^{2} e^{2} c}\right] c^{2} \quad$ all that remains is to set $\kappa^{2}=\frac{1}{2 \alpha}$, thus
$1=\left[\frac{e^{2}}{2 \alpha h c}\right]\left[\frac{2 \alpha h}{e^{2} c}\right] c^{2}=\epsilon_{0} \mu_{0} c^{2}$

Slide 22: Properties of Vacuum

I now obtained the sought after result

$$
\epsilon_{0}=\frac{e^{2}}{2 \alpha h c} \quad \text { and } \quad \mu_{0}=\frac{2 \alpha h}{e^{2} c}
$$

an expressions first formulated in 1916 by Sommerfeld ${ }^{3}$ but in a way to define the fine structure constant α.

This concludes the proof that the equation set $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is a mathematical reformulation of the Maxwell equations, because now we can replace $1 / c^{2}$ in (1), Slide-13, with $\epsilon_{0} \mu_{0}$ as we have derived it independently.

3 A. Sommerfeld. "Zur Quantentheorie der Spektrallinien". In: Annalen der Physik 356.17 (1916), pp. 1-94.

The fine structure constant α is said to quantify the strength of the electromagnetic interaction between elementary charged particles; the modern view also includes the coupling of the electromagnetic force to the other three forces ${ }^{4}$; these are the strong, weak and gravitational forces. Repeating the equation for electromagnetic momentum, $\varrho h=\kappa l e c$, here the constant $\kappa=1 / \sqrt{2 \alpha}$ is a coupling constant relating the electric charge momentum to mechanical momentum.

4 Current advances: The fine-structure constant and quantum Hall effect. 2021. URL: https://physics.nist.gov/cuu/Constants/alpha. html (visited on 2021-10-30).

Slide 24: Discussion: Oliver Heaviside

Oliver Heaviside ${ }^{5}$ in 1892 presented us with vector algebra,

Planck proposed the quantity h in the year 1900 and

Millikan published in 1913 the electric charge as $1.592 \times 10^{-19} \mathrm{C}$.

What if Heaviside discovered $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$?

5 Oliver Heaviside. Electromagnetic Theory. Chelsea Publishing co., New York, 1893.

A Heaviside constant $\kappa=8.277$ would have been proposed,

The magnetic permeability could have transitioned from the fixed constant $4 \pi \times 10^{-7}$ to the expression $h /\left(\kappa^{2} e^{2} c\right)$, or at least that relationship would have been known.

Then in 1916 Sommerfeld would have established $\alpha^{-1}=2 \kappa^{2}$.

Nonetheless, $\varrho h=\kappa l e c$ now provides a key to determine the values for the elementary length and time. Using the 2018 CODATA values we get:

$$
\begin{array}{ll}
\kappa=8.27755999929(62) & \text { Heaviside constant } \\
l_{0}=1.66656629911(12) \times 10^{-24} & \text { metres } \\
t_{0}=5.55906679649(42) \times 10^{-33} & \text { seconds using } l=c t
\end{array}
$$

Slide 27: Discussion: Magnetic flux quantum

The magnetic flux quantum is defined as

$$
\phi_{0}=h /(2 e)
$$

it was observed experimentally in 1961 by Deaver ${ }^{6}$ in hollow superconducting cylinders, and Shankar ${ }^{7}$ shows how to derive it by analysing the Aharonov-Bohm effect.

6 Bascom S. Deaver and William M. Fairbank. "Experimental Evidence for Quantized Flux in Superconducting Cylinders". In: Physical Review Letters 7.2 (1961-07), pp. 43-46. URL: https://link.aps.org/doi/10.1103/ PhysRevLett. 7.43 (visited on 2022-06-15).
7 R. Shankar. Principles of Quantum Mechanics, 2nd edition. SPlenum Press, 1994. 676 pp.

Slide 28: Discussion: Magnetic field quanta?

I found the magnetic field of an elementary em-wave \mathcal{W} as $B=$ $h /\left(k l^{2} e\right)$ (Slide 20) which implies a magnetic flux for the elementary EM-wave

$$
\tilde{\phi}=h /(\kappa e)=\sqrt{2 \alpha} h / e
$$

which is clearly smaller than the magnetic flux quantum established by measurement and quantum theory. I offer no opinion whether the irrational $\tilde{\phi}=\sqrt{2 \alpha} h / e$ is a quantum or not, other than to comment that when scaled this way we have

$$
\left.\mathbf{S}=\mu_{0}^{-1}\|\mathbf{B} \times \mathbf{E}\|=h \frac{c^{2}}{l^{4}} \quad \text { energy per (area } \times \text { time }\right)
$$

which confirms the first of the assertions on Slide-15.

Slide 29: Discussion: What defines the speed of light?
'Who was first? The chicken or the egg'

The values for the permittivity ϵ_{0} and permeability μ_{0} were derived using the velocity c defined previously in $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$, and by the two assertions which introduced the unit action h and the elementary charge e. Therefore:

The relation

$$
c=1 / \sqrt{\epsilon_{0} \mu_{0}}
$$

does not define the speed of light from first principles!

Proposition: The vacuum has additional characteristics which defines the transportivity $\mathcal{T}=c^{2}$. As an analog to fluids, the transportivity could be a ratio of two properties, yet undiscovered, which are not functions of the speed of light.

For example, the speed of a sound wave in a material is dependent on the material properties. In fluids $c^{2}=K_{s} / \rho$ where K_{s} is a coefficient of stiffness and ρ the fluid's density. Alternatively, we can also express it as $c^{2}=\partial P / \partial \rho$ where P is pressure. But do take note of the fact that none of K_{s}, ρ and P are defined in terms of the speed of sound within that medium.

Slide 31: Describing EM-waves

To fully describe a wave \mathcal{W} also requires a set of parameter equations $\mathscr{P}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ which provide the solution to $\mathscr{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$. The parameter equations $\mathscr{P}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ define the unit vectors $\hat{\mathrm{u}}(t), \hat{\mathrm{B}}(t)$ and $\hat{\mathrm{E}}(t)$ all as functions of t only, with the quantifiers c, B and E providing the necessary units, or quantities, and the scaling for \mathcal{W}. Any set of unit vectors $\hat{\mathrm{u}}(t), \hat{\mathrm{B}}(t)$ and $\hat{\mathrm{E}}(t)$ that simultaneously satisfy

$$
\hat{\mathrm{E}}=\hat{\mathrm{u}} \times \hat{\mathrm{B}} \quad \hat{\mathrm{u}}=\hat{\mathrm{B}} \times \hat{\mathrm{E}} \quad \hat{\mathrm{~B}}=\hat{\mathrm{E}} \times \hat{\mathrm{u}} .
$$

provide a solution to \mathcal{M}. Suitable solutions can be found, among others, by a succession of Euler rotations.

Slide 32: Describing EM-waves

$$
\mathcal{W}(\mathbf{p}) \underset{\mathrm{by}}{\mathrm{dsc}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\begin{array}{l}
\mathbf{E}=\mathbf{u} \times \mathbf{B} \\
\mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E} \\
\mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u}
\end{array}\right\} \underset{\mathrm{by}}{\mathrm{par}} \mathscr{P}(\mathbf{u}, \mathbf{B}, \mathbf{E})
$$

which we simply shorten to:

$$
\mathcal{W}(\mathbf{p}) \frac{\text { par }}{\text { by }} \mathscr{P}(\mathbf{u}, \mathbf{B}, \mathbf{E}) \quad \text { where } \quad \mathbf{p}=\int \mathbf{u} \mathrm{d} t
$$

Every authoritative book, for example Jackson ${ }^{8}$, describes an EM-field of a circular polarised travelling plane wave as

$$
\begin{aligned}
\mathbf{B}(\mathbf{z}, t) & =B_{0}(\hat{\mathrm{x}} \cos (k \mathbf{n} \cdot \mathbf{z}-\omega t)+\hat{\mathrm{y}} \sin (k \mathbf{n} \cdot \mathbf{z}-\omega t)) \\
& =B_{0}\left[\hat{\mathrm{x}} \cos \left(\frac{\omega z}{c}-\omega t\right)+\hat{\mathrm{y}} \sin \left(\frac{\omega z}{c}-\omega t\right)\right]
\end{aligned}
$$

with the phase velocity defined by the wave vector $k \mathbf{n}$.

8 John David Jackson. Classical Electrodynamics, 2nd. Ed. John Wiley \& Sons Inc, 1975.

Slide 34: Travelling plane waves
We define a wave's velocity vector $\mathbf{u}=\hat{z} c$ which gives the position vector \mathbf{p}_{i} for the $\mathrm{i}^{\text {th }}$ travelling plane

$$
\mathbf{p}_{i}=\int \mathbf{u} \mathrm{d} t=\hat{\mathrm{z}} \int c \mathrm{~d} t=\hat{\mathrm{z}}\left(z_{i}+c t\right)
$$

and use it to describe a circular polarised travelling plane EM-wave \mathcal{W} as $\mathcal{W}\left(\mathbf{p}_{i}, t\right) \underset{\text { by }}{\stackrel{\mathrm{par}}{\longrightarrow}} \mathscr{P}_{i}(\mathbf{u}, \mathbf{B}, \mathbf{E}, t)$

$$
\mathscr{P}_{i}(\mathbf{u}, \mathbf{B}, \mathbf{E}, t)=\left\{\begin{array}{l}
\mathbf{u}=\hat{\mathrm{z}} c \\
\mathbf{B}=B\left[\hat{\mathrm{x}} \cos \omega\left(\frac{\mathbf{p}_{i}}{c}-t\right)+\hat{\mathrm{y}} \sin \omega\left(\frac{\mathbf{p}_{i}}{c}-t\right)\right] \\
\mathbf{E}=c B\left[-\hat{\mathrm{x}} \sin \omega\left(\frac{\mathbf{p}_{i}}{c}-t\right)+\hat{\mathrm{y}} \cos \omega\left(\frac{\mathbf{p}_{i}}{c}-t\right)\right]
\end{array}\right\}
$$

Slide 35: Travelling plane waves
$\mathcal{W}\left(\mathbf{p}_{i}, t\right) \frac{\mathrm{par}}{\text { by }} \mathscr{P}_{i}(\mathbf{u}, \mathbf{B}, \mathbf{E}, t)$ describes particular travelling plane of the wave \mathcal{W} evaluated at the position \mathbf{p}_{i} for any initial position $-\infty<z_{i}<\infty$ at $t=0$. But why so complicated? With $\mathbf{p}_{i}=\hat{z} \int c \mathrm{~d} t=$ $\hat{\mathrm{z}}\left(z_{i}+c t\right)$ we can simplify the above to

$$
\mathcal{W}\left(\mathbf{p}_{i}\right) \frac{\mathrm{par}}{\mathrm{by}}\left\{\begin{array}{l}
\mathbf{u}=\hat{\mathrm{z}} c \tag{3}\\
\mathbf{B}=B\left[\hat{\mathrm{x}} \cos \left(\omega z_{i} / c\right)+\hat{\mathrm{y}} \sin \left(\omega z_{i} / c\right)\right] \\
\mathbf{E}=c B\left[-\hat{\mathrm{x}} \sin \left(\omega z_{i} / c\right)+\hat{\mathrm{y}} \cos \left(\omega z_{i} / c\right)\right]
\end{array}\right\}
$$

and we know that the above parameters provide a solution to $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ and I have shown that \mathcal{M} is a reformulation of the Maxwell equation in vacuum. Therefore (3) describes a particular plane of an EM-travelling plane wave.

Slide 36: Ball lightning as a three dimensional EM-soliton
For a travelling object o we define a unit velocity vector as

$$
\hat{\mathrm{u}}_{a}(t)=\hat{\mathrm{x}} \sin \omega_{1} t \sin \omega_{2} t+\hat{\mathrm{y}} \sin \omega_{1} t \cos \omega_{2} t+\hat{\mathrm{z}} \cos \omega_{1} t
$$

The path \mathbf{s}_{σ} that the object σ follows is found by integration

$$
\begin{aligned}
\mathbf{s}_{a}(t)= & \int c \hat{\mathrm{u}}_{a} \mathrm{~d} t \\
=\hat{\mathrm{x}} & \mathrm{c}\left(\frac{\sin \left(\omega_{2}+\omega_{1}\right) t}{2\left(\omega_{2}+\omega_{1}\right)}-\frac{\sin \left(\omega_{1}-\omega_{2}\right) t}{2\left(\omega_{1}-\omega_{2}\right)}\right) \\
& +\hat{\mathrm{y}} c\left(\frac{\cos \left(\omega_{2}+\omega_{1}\right) t}{2\left(\omega_{2}+\omega_{1}\right)}+\frac{\cos \left(\omega_{1}-\omega_{2}\right) t}{2\left(\omega_{1}-\omega_{2}\right)}\right)-\hat{\mathrm{z}} c \frac{\sin \omega_{1} t}{\omega_{1}}
\end{aligned}
$$

The path is closed, or repeats, in periods of $t=2 \pi$ and as $\left\|c \hat{\mathbf{u}}_{0}(t)\right\|=$ c the pathlength of \mathbf{s}_{σ} is $2 \pi c$.

Slide 37: Ball lightning as a three dimensional EM-soliton

Let's define an EM-soliton Θ as a EM-wave that exists only on the closed path $\mathbf{p}=\int c \hat{\mathbf{u}}_{a} \mathrm{~d} t$, and at $t=0$ it is at the position $\mathbf{p}_{0}=$ $\mathbf{s}_{a}\left(t_{0}\right)$, thus $\mathbf{u}=c \hat{u}_{a}\left(t_{0}+t\right)$, hence:

$$
\begin{aligned}
\mathbf{u}= & c\left(\hat{\mathrm{x}} \sin \omega_{1}\left(t_{0}+t\right) \sin \omega_{2}\left(t_{0}+t\right)\right. \\
& \left.+\hat{\mathrm{y}} \sin n \omega_{1}\left(t_{0}+t\right) \cos \omega_{2}\left(t_{0}+t\right)+\hat{\mathrm{z}} \cos \omega_{1}\left(t_{0}+t\right)\right) \\
\mathbf{B}= & B\left(\hat{\mathrm{x}} \cos \omega_{2}\left(t_{0}+t\right)-\hat{\mathrm{y}} \sin \omega_{2}\left(t_{0}+t\right)\right) \\
\mathbf{E}= & c B\left(\hat{\mathrm{x}} \cos \omega_{1}\left(t_{0}+t\right) \sin \omega_{2}\left(t_{0}+t\right)\right. \\
& \left.+\hat{\mathrm{y}} \cos \omega_{1}\left(t_{0}+t\right) \cos \omega_{2}\left(t_{0}+t\right)-\hat{\mathrm{z}} \sin \omega_{1}\left(t_{0}+t\right)\right)
\end{aligned}
$$

Slide 38: Ball lightning as a three dimensional EM-soliton

The above satisfies the equation set

$$
\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\mathbf{E}=\mathbf{u} \times \mathbf{B}, \quad \mathbf{u} \frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E}, \quad \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u}\right\}
$$

Therefore, $\Theta(\mathbf{p}, t)$ describes an EM-wave; propagating on the closed path $\mathbf{p}=\mathbf{s}_{a}$ at velocity c. The equation set $\Theta(\mathbf{p}, t)$ suggests that the wave is "trapped" by its magnetic field which forms a closed ring that precesses with the wave motion, that is when connected to the magnetic field of a point retarded by $\omega_{2}\left(t_{0}-1 / 2\right)$ but at a different z-elevation; and with the electric field always radiating outwards.

Slide 39: Soliton

Two views of the path $\hat{\mathrm{s}}_{0}(t)$ defined by $\Theta(\mathbf{p}, t)$ for the frequency ratios $\omega_{1}: \omega_{2}=1: 2,1: 3$, and $1: 7$. The path length of each curve is 2π.

Slide 40: Ball lightning as a three dimensional EM-soliton
Here I need to point out that Arnhoff ${ }^{9}$, Chubykalo ${ }^{10}$ and Cameron ${ }^{11}$ presented solutions for three dimensional EM-wave structures, all of which are based on the superposition principle which allows the construction of intricate wave structures, and the complexity of all contrasts with the simplicity of $\Theta(\mathbf{p}, t)$.

9 G. Arnhoff. "Is there yet an explanation of ball lightning?" en. In: European Transactions on Electrical Power 2.3 (1992), pp. 137-142. URL: https: //onlinelibrary.wiley.com/doi/abs/10.1002/etep. 4450020302 (visited on 2022-06-13).
10 Andrew E. Chubykalo and Augusto Espinoza. "Unusual formations of the free electromagnetic field in vacuum". en. In: Journal of Physics A: Mathematical and General 35.38 (2002-09), pp. 8043-8053. URL: https : //doi.org/10.1088/0305-4470/35/38/307 (visited on 2022-06-10).
11 Robert P Cameron. "Monochromatic knots and other unusual electromagnetic disturbances: light localised in 3D". in: Journal of Physics Communications 2.1 (2018), p. 015024.

A.L. Vrba

Deriving the Maxwell equations

Slide 41: Soliton

The term soliton describes self reinforcing solitary waves. Drazin ${ }^{1}$ defined a soliton as any solution of a nonlinear equation (or a system) which:
i. represents a wave of permanent form;
ii. is localised, so that it decays or approaches a constant at infinity;
iii. can interact strongly with other solitons and retain its identity. The above analysis confirms the first two points; the third is yet to be demonstrated.

12 P. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge University Press, 2002.

With this talk I presented a novel wave equation system, where each possible solution describes a bimodal-transverse wave in a more aufschlussreicher ${ }^{13}$ way than was possible with the classic partial differential approach. Remarkably, this equation set proves to be fundamental to electromagnetic theory as it demands the formulations for ϵ_{0} and μ_{0} in a form previously only derivable from seemingly unrelated atomic theories and physical observations.

13 aufschlussreich: German adj., translations: enlightening, illuminating, informative, insightful, instructive, revealing, and telling.

