General Maxwellian Dynamics Maxwellian solitons are Particles

Anton Lorenz Vrba

Ryde, United Kingdom
December 17, 2022

Presentation to the Harbingers of Neophysics

Copyright © 2022, A.L. Vrba; this work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives" license.

Slide 2: What is a wave? (The d'Alembert wave equation)
Towne ${ }^{1}$ states that the requirement for a physical condition to be referred to as a wave, is that its mathematical representation give rise to a partial differential equation of particular form, known as the wave equation. The classical form

$$
\frac{\partial^{2} w}{\partial p^{2}}-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \quad \text { or } \quad \nabla^{2} w-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0
$$

was proposed in 1748 by d'Alembert for a one-dimensional continuum. A decade later, Euler established the equation for the three-dimensional continuum.

1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.

Slide 3: Electromagnetic Bimodal Wave Equation \& Maxwell

Figure 1: Illustrating the vectors of an EM-wave

Slide 4: Electromagnetic Bimodal Wave Equation \& Maxwell

$$
\mathcal{W}(\mathbf{p}) \frac{\mathrm{dsc}}{\mathrm{by}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\begin{array}{lr}
\mathbf{E}=\mathbf{u} \times \mathbf{B} & (\text { (activation by } \mathbf{B}) \\
\mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E} & (\text { (vectoring by } \mathbf{B} \times \mathbf{E}) \\
(\mathrm{b}) \\
\mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u} & (\text { (reactivation by } \mathbf{E}) \quad(\mathrm{c})
\end{array}\right\}
$$

$\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ predicts the Maxwell equations in vacuum, that is, $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is the fundamental mathematical explanation for the electromagnetic wave phenomena.

Slide 5: Electromagnetic Bimodal Wave Equation \& Maxwell

To show that $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is the superordinated mathematical formulation for the Maxwell equations is the task we tackle now:

But, first we need to evaluate the triple vector products $\nabla \times(\mathbf{u} \times \mathbf{B})$ and $\nabla \times(\mathbf{E} \times \mathbf{u})$, which we expand using general vector analytic methods.

$$
\begin{aligned}
& \nabla \times(\mathbf{u} \times \mathbf{B})=\mathbf{u}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{u})-(\mathbf{u} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{u} \\
& \nabla \times(\mathbf{E} \times \mathbf{u})=\mathbf{E}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{E})-(\mathbf{E} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{E}
\end{aligned}
$$

Slide 6: Electromagnetic Bimodal Wave Equation \& Maxwell
$\nabla \cdot \mathbf{u}=0 \quad$ because c and $\hat{\mathbf{u}}(t)$ are not functions of x, y, and z
$\nabla \cdot \mathbf{B}=0 \quad$ because B and $\hat{\mathrm{B}}(t)$ are not functions of x, y, and z
$\nabla \cdot \mathbf{E}=0 \quad$ ditto, because $\mathbf{E}=\mathbf{u} \times \mathbf{B}$
$(\mathbf{B} \cdot \nabla) \mathbf{u}=0 \quad$ because $\left(B_{x} \frac{\partial}{\partial x}+B_{y} \frac{\partial}{\partial y}+B_{z} \frac{\partial}{\partial z}\right) c \hat{\mathbf{u}}(t)=0$
$(\mathbf{E} \cdot \nabla) \mathbf{u}=0 \quad$ ditto
$(\mathbf{u} \cdot \nabla) \mathbf{B}=$?
$(\mathbf{u} \cdot \nabla) \mathbf{E}=?$

A.L. Vrba

Slide 7: Electromagnetic Bimodal Wave Equation \& Maxwell

$$
\mathbf{u} \cdot \nabla=\frac{\partial}{\partial t} \text { because } \mathbf{u} \cdot \nabla=\frac{\partial x}{\partial t} \frac{\partial}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial}{\partial y}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=\frac{\partial}{\partial t}
$$

and that leaves us with

$$
\begin{aligned}
& \nabla \times(\mathbf{u} \times \mathbf{B})=\underline{u}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{u})+(\mathbf{B} \cdot \nabla) \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{B}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times(\mathbf{E} \times \mathbf{u})=\mathbf{E}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{E})+(\mathbf{u} \cdot \nabla) \mathbf{E}-(\mathbf{E} \cdot \nabla) \mathbf{u}=\frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

Slide 8: Electromagnetic Bimodal Wave Equation \& Maxwell

Applying a 'left and right side' curl operation on $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})(\mathrm{a})$ and (c) to obtain

$$
\begin{aligned}
& \nabla \times \mathbf{E}=\nabla \times(\mathbf{u} \times \mathbf{B})=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \nabla \times(\mathbf{E} \times \mathbf{u})=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

and on slide 10 we established $\nabla \cdot \mathbf{B}=0$ and $\nabla \cdot \mathbf{E}=0$. Thus we have the Maxwell equations in vacuum if we can show that $c^{-2}=\epsilon_{0} \mu_{0}$.

Slide 9: Electromagnetic Bimodal Wave Equation \& Maxwell
Because, $\quad \nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \quad$ and $\quad \nabla^{2} \mathbf{B}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}=0$
are derived from the Maxwell equations, proves that $\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ is a new formulation for bimodal-waves as per Towne ${ }^{2}$ (Slide 3)

$$
\mathcal{W}(\mathbf{p}) \frac{\mathrm{dsc}}{\mathrm{by}} \mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})=\left\{\begin{array}{lr}
\mathbf{E}=\mathbf{u} \times \mathbf{B} & (\text { activation by } \mathbf{B}) \quad \text { (a) } \\
\mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E} & (\text { vectoring by } \mathbf{B} \times \mathbf{E}) \quad \text { (b) } \\
\mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u} & \text { (reactivation by } \mathbf{E} \text {) (c) }
\end{array}\right\}
$$

2 Towne, Wave phenomena.

Slide 10: Classical interpretation of an Electromagnetic Plain Wave

$\mathbf{E}(\mathbf{z}, t)=\mathbf{E}_{\mathbf{0}} \cos (k \hat{\mathrm{n}} \cdot \mathbf{z}-\omega t)$
$\mathbf{B}(\mathbf{z}, t)=\mathbf{B}_{\mathbf{0}} \cos (k \hat{\mathrm{n}} \cdot \mathbf{z}-\omega t)$
$\mathbf{E}_{0} \cdot \hat{\mathrm{n}}=0, \quad \mathbf{B}_{0} \cdot \hat{\mathrm{n}}=0, \mathbf{B}_{0}=k \hat{\mathrm{n}} \times \mathbf{E}_{0}, k=\frac{\omega}{c}, \hat{\mathrm{n}}=\hat{\mathrm{z}}$

Slide 11: The Rotary Wave (think propeller)

$$
\mathcal{R}(\mathbf{p}) \underset{\mathrm{by}}{\mathrm{dsc}} \mathcal{M}(\mathbf{u}, \mathbf{A}, \mathbf{R})=\left\{\begin{array}{lrc}
\mathbf{R}=\mathbf{u} \times \mathbf{A} & (\text { activation by } \mathbf{A}) & \text { (a) } \\
\mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R} & \text { (vectoring by } \mathbf{A} \times \mathbf{R}) & \text { (b) } \\
\mathbf{A}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{R} \times \mathbf{u} & \text { (reactivation by } \mathbf{R}) & \text { (c) }
\end{array}\right\}
$$

where $\mathbf{A}=l A \hat{\mathrm{~A}}(t)$ is the activation-flux vector,
l is the length of the vector,
A an elementary quantity with units and Â a unitless unity vector.

Slide 12: The Rotary Wave (think propeller)

$$
\begin{array}{rlrl}
\nabla \cdot \mathbf{A} & =0 & \nabla \cdot \mathbf{R} & =0 \\
\nabla \times \mathbf{A} & =\epsilon \mu \frac{\partial \mathbf{R}}{\partial t} & \nabla \times \mathbf{R}=-\frac{\partial \mathbf{A}}{\partial t}
\end{array}
$$

A solution is the quantised rotary wave γ

$$
\gamma \underset{\mathrm{by}}{\mathrm{par}}\left\{\begin{array}{l}
\mathbf{u}=\hat{\mathrm{z}} c \\
\mathbf{A}=r l_{\mathrm{o}} A\left(\hat{\mathrm{x}} \cos n \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t\right) \\
\mathbf{R}=\operatorname{cr} l_{\mathrm{o}} A\left(-\hat{\mathrm{x}} \sin \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \cos \grave{n} \omega_{\mathrm{o}} t\right)
\end{array}\right.
$$

Slide 13: The Rotary Wave (think propeller)

Assertions used to describe an EM-wave
a) An elementary EM-wave \mathcal{W} exhibits power h / t^{2}, where h is the Planck constant and $t=1$ second. This requires \mathbf{B} to be an elementary field.
b) This elementary wave transports an electric charge e every one second which is a wave current.

Slide 15: Properties of Vacuum (Two Assertions)

Assertions used to describe a Rotary wave
a) An elementary rotary wave \mathcal{R} has action h. This requires \mathbf{A} to be an elementary activation-flux vector.
b) This elementary rotary wave transports an elementary load ℓ.

We need to assign some units to the elementary load. I propose a new unit L, the leyden, honouring the Leyden jar.
(Hinting that the electron is not the carrier of electric charge that drives our industry.)

Slide 16: Action of a rotary wave

Let's consider a the rotary wave γ

$$
\begin{aligned}
& \gamma(\mathbf{p}) \underset{\mathrm{by}}{\mathrm{dsc}} \mathcal{M}(\mathbf{u}, \mathbf{A}, \mathbf{R})=\left\{\begin{array}{ll}
\mathbf{R}=\mathbf{u} \times \mathbf{A} & \text { (a) } \\
\mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R} & \text { (b) } \\
\mathbf{A}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{R} \times \mathbf{u} & \text { (c) }
\end{array}\right\} \\
& \gamma \underset{\mathrm{by}}{\mathrm{par}}\left\{\begin{array}{l}
\mathbf{u}=\hat{z} c \\
\mathbf{A}=r l_{\mathrm{o}} A\left(\hat{\mathrm{x}} \cos n \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t\right) \\
\mathbf{R}=\operatorname{cr} l_{\mathrm{o}} A\left(-\hat{\mathrm{x}} \sin \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \cos \grave{n} \omega_{\mathrm{o}} t\right)
\end{array}\right.
\end{aligned}
$$

Slide 17: Properties of Vacuum

$$
\mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R}
$$

On the premise that $\mathbf{A} \times \mathbf{R}$ is indicative of the wave action, we multiply left and right by h and substitute $\|\mathbf{A}\|=l_{0} A$

$$
\begin{aligned}
\|h \mathbf{u}\| & =\left\|\frac{h}{l_{\mathrm{\circ}}^{2} A^{2}} \mathbf{A} \times \mathbf{R}\right\| \\
\therefore \quad h & =\left[\frac{h}{l_{\mathrm{o}}^{2} A^{2} c}\right](\|\mathbf{A}\|\|\mathbf{R}\|)
\end{aligned}
$$

Slide 18: Rotary Action

Action is momentum times distance. \Rightarrow Therefore, rotaryaction is rotary momentum times the angle θ subtended, that is $S_{\text {rot }}=I \omega \theta$. Hence we can formulate the quantised rotational action as

$$
h_{\mathrm{rot}}=\varrho h=k \ell l_{\mathrm{o}}^{2} \omega_{\mathrm{o}} \theta
$$

where k is a dimensionless proportionality constant of unknown value, scaling $l l_{0}^{2} \omega_{\mathrm{o}} \theta$ to the rotational-action h_{rot} and here $\varrho=$ $1 \mathrm{Lkg}^{-1}$ (leyden per kilogram) a correction factor to satisfy the dimensionality of above. Also, in a quantised system $\theta=1$ radian.

Slide 19: Rotary Action

Because $l_{\circ}=c t_{\mathrm{O}}=c / f_{\circ}$ to obtain $\omega_{\mathrm{O}}=2 \pi f_{\mathrm{O}}=2 \pi c / l_{\mathrm{o}}$ hence h_{rot} is also expressed as:

$$
h_{\mathrm{rot}}=\varrho h=2 \pi k \ell l_{\circ} c \theta
$$

Because the load is carried by \mathbf{A} which has a magnitude $\|\mathbf{A}\|=l_{0} A$, therefore we can also postulate the elementary rotary-action

$$
h_{\mathrm{rot}}=\chi l_{\mathrm{o}} A \theta
$$

where χ is part of a constant to be determined. Also note that A is a quantised quantity.

Slide 20: Property of Vacuum

$$
h_{\mathrm{rot}}=\varrho h=2 \pi k l l_{\mathrm{o}} c \theta=\chi l_{\circ} A \theta
$$

thus we get

$$
A=\frac{2 \pi k \ell c}{\chi} \text { hence }\|\mathbf{A}\|=\frac{2 \pi k l_{0} \ell c}{\chi}
$$

and using above in

$$
\begin{aligned}
h & =\left[\frac{h}{l_{0}^{2} A^{2} c}\right](\|\mathbf{A}\|\|\mathbf{R}\|) \quad \text { gives } \\
& =\left[\frac{h}{l_{0}^{2} A^{2} c}\right]\left(\frac{2 \pi k l_{0} \ell c}{\chi}\|\mathbf{R}\|\right)
\end{aligned}
$$

A.L. Vrba

Slide 21: Property of Vacuum

$$
h=\left[\frac{h}{l_{0}^{2} A^{2} c}\right]\left(\frac{2 \pi k l_{0} \ell c}{\chi}\|\mathbf{R}\|\right)
$$

but $\|\mathbf{R}\|=c l_{\mathrm{o}} A$ which gives after defining a further constant $\left[\frac{l_{\mathrm{o}}^{2}}{\chi}\right]$

$$
h=\left[\frac{h}{l_{\mathrm{o}}^{2} A^{2} c}\right]\left[\frac{l_{\mathrm{\circ}}^{2}}{\chi}\right] 2 \pi k \ell c^{2} A
$$

We are now in the position to define the quantised activator as

$$
A=\frac{h}{2 \pi k l}
$$

Slide 22: Property of Vacuum

$$
h=\left[\frac{h}{l_{0}^{2} A^{2} c}\right]\left(\frac{2 \pi k l_{0} \ell c}{\chi}\|\mathbf{R}\|\right)
$$

but $\|\mathbf{R}\|=c l_{\circ} A$ which gives after defining a further constant $\left[\frac{l_{\mathrm{o}}^{2}}{\chi}\right]$

$$
h=\left[\frac{h}{l_{0}^{2} A^{2} c}\right]\left[\frac{l_{\mathrm{o}}^{2}}{\chi}\right] 2 \pi k \ell c^{2} A
$$

We are now in the position to define the quantised activator as

$$
A=\frac{h}{2 \pi k l}
$$

Slide 23: Property of Vacuum

but only if

$$
\begin{aligned}
& 1=\left[\frac{h}{l_{\mathrm{o}}^{2} A^{2} c}\right]\left[\frac{l_{\mathrm{o}}^{2}}{\chi}\right] c^{2} \quad \text { using } A=\frac{h}{2 \pi k \ell} \text { to replace } A \text { to get } \\
& 1=\left[\frac{4 \pi^{2} k^{2} \ell^{2}}{l_{\mathrm{o}}^{2} h c}\right]\left[\frac{l_{\mathrm{o}}^{2}}{\chi}\right] c^{2} \quad \text { which requires } \chi=\frac{4 \pi^{2} k^{2} \ell^{2} c}{h}, \text { hence } \\
& 1=\left[\frac{4 \pi^{2} k^{2} \ell^{2}}{l_{\mathrm{o}}^{2} h c}\right]\left[\frac{l_{\mathrm{o}}^{2} h}{4 \pi^{2} k^{2} \ell^{2} c}\right] c^{2}=\epsilon \mu c^{2} \quad \text { from which we get } \\
& \epsilon=\frac{4 \pi^{2} k^{2} \ell^{2}}{l_{\mathrm{o}}^{2} h c} \text { and } \quad \mu=\frac{l_{\mathrm{o}}^{2} h}{4 \pi^{2} k^{2} \ell^{2} c}
\end{aligned}
$$

Slide 24: Roton a soliton that underlies Maxwellian dynamics.

$$
\begin{aligned}
& \mathbf{R}=(\mathbf{u} \times \mathbf{A}) \quad \text { and } \quad \mathbf{u}=\frac{1}{A^{2}}(\mathbf{A} \times \mathbf{R}) \text { and } \mathbf{A}=\frac{1}{c^{2}}(\mathbf{R} \times \mathbf{u}) \\
& \mathscr{R} \underset{\mathrm{py}}{\mathrm{par}}\left\{\begin{array}{l}
\mathbf{u}=c \hat{u} \\
\mathbf{A}=\grave{r} l_{0} A \hat{A} \\
\mathbf{R}=\operatorname{cr} l_{0} A \hat{R}
\end{array}\right.
\end{aligned}
$$

where \grave{r} a unitless scaling factor. The simultaneous algebraic vector equation set

$$
\hat{\mathrm{R}}=\hat{u} \times \hat{\mathrm{A}} \quad \hat{u}=\hat{\mathrm{A}} \times \hat{\mathrm{R}} \quad \hat{\mathrm{~A}}=\hat{\mathrm{R}} \times \hat{u} .
$$

has infinitely many solutions, some of which can be found by a succession of Euler rotations. Each solution describes a particular roton type.

Slide 25: 1D and 2d-Roton: $\hat{R}=\hat{u} \times \hat{A}, \hat{u}=\hat{A} \times \hat{R}, \hat{A}=\hat{R} \times \hat{u}$.
1d-Roton Linear propagation path along the z-axis (photon like)

$$
\begin{aligned}
& \hat{u}_{\gamma}=\hat{\mathrm{z}} \\
& \hat{\mathrm{~A}}_{\gamma}=\hat{\mathrm{x}} \cos \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t \\
& \hat{\mathrm{R}}_{\gamma}=-\hat{\mathrm{x}} \sin \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \cos \grave{n} \omega_{\mathrm{o}} t
\end{aligned}
$$

2D-Roton Circular propagation path in the $x y$-plane centred at the origin

$$
\begin{array}{ll}
\hat{u}_{\odot}=\hat{\mathrm{x}} \sin \grave{n} \omega_{\mathrm{o}} t-\hat{\mathrm{y}} \cos \grave{n} \omega_{\mathrm{o}} t & \\
\hat{\mathrm{~A}}_{\odot}=\hat{\mathrm{x}} \cos \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t & \text { or } \hat{\mathrm{z}} \\
\hat{\mathrm{R}}_{\odot}=\hat{\mathrm{z}} & \text { or } \hat{\mathrm{x}} \cos \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t
\end{array}
$$

where \grave{n} a unitless scaling factor

Slide 26: 3D-Roton: $\hat{R}=\hat{u} \times \hat{A}, \hat{u}=\hat{A} \times \hat{R}, \hat{A}=\hat{R} \times \hat{u}$.

3D-Roton Closed curved, or wound up, path in xyz-space centred at the origin.

$$
\begin{align*}
& \hat{u}_{\varphi}=\hat{\mathrm{x}} \sin \omega_{1} t \sin \grave{n} \omega_{0} t-\hat{\mathrm{y}} \sin n \omega_{1} t \cos \grave{n} \omega_{0} t-\hat{\mathrm{z}} \cos \omega_{1} t \\
& \hat{\mathrm{~A}}_{\varphi}=\hat{\mathrm{x}} \cos \grave{n} \omega_{0} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{o} t \tag{1}\\
& \hat{\mathrm{R}}_{\varphi}=\hat{\mathrm{x}} \cos \omega_{1} t \sin \grave{n} \omega_{o} t-\hat{\mathrm{y}} \cos \omega_{1} t \cos \grave{n} \omega_{0} t+\hat{\mathrm{z}} \sin \omega_{1} t
\end{align*}
$$

where $\omega_{1}=\grave{p} \grave{n} \omega_{\mathrm{o}}$ and where \grave{p} is a prime integer ensuring that the path is repeated in periods of t_{0} because $\omega_{0} t=2 \pi$.

Slide 27: Energy of a 1D-roton

$$
\gamma \underset{\mathrm{by}}{\mathrm{par}}\left\{\begin{array}{l}
\mathbf{u}=\hat{\mathrm{z}} c \\
\mathbf{A}=r l_{\mathrm{o}} A\left(\hat{\mathrm{x}} \cos n \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t\right) \\
\mathbf{R}=\operatorname{cr} l_{\mathrm{o}} A\left(-\hat{\mathrm{x}} \sin \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \cos \grave{n} \omega_{\mathrm{o}} t\right)
\end{array}\right.
$$

Using $h_{\text {rot }}=\varrho h=2 \pi k \ell l_{0} c \theta$ from Slide-19 we obtain the action of γ is $h_{\gamma}=\grave{r}^{2} n h_{\mathrm{rot}}=k l \grave{r}^{2} l_{\mathrm{o}}^{2} n \omega_{\mathrm{o}}$. Therefore the action vector S_{γ} is given by (Slide-20)

$$
\begin{aligned}
S_{\gamma} & =\epsilon \grave{n}(\mathbf{A} \times \mathbf{R}) \\
& =\epsilon \grave{n} \grave{r}^{2}\left(l_{0} A \hat{\mathrm{~A}}(t) \times l_{0} R \hat{\mathrm{R}}(t)\right)
\end{aligned}
$$

Slide 28: Energy of a 1D-roton

$$
\begin{aligned}
S_{\gamma} & =\epsilon \grave{n}(\mathbf{A} \times \mathbf{R}) \\
& =\epsilon \grave{n} \grave{r}^{2}\left(l_{0} A \hat{\mathrm{~A}}(t) \times l_{0} R \hat{\mathrm{R}}(t)\right)
\end{aligned}
$$

and the norm evaluates to

$$
\begin{aligned}
\left\|\boldsymbol{S}_{\gamma}\right\| & =\epsilon \grave{n} \grave{r}^{2} c l_{0} A^{2} \\
& =h \grave{n} \grave{r}^{2}
\end{aligned}
$$

Therefore, with $\grave{r}=1$ the rotary wave γ carries an energy content

$$
\mathcal{E}_{\gamma}=h \frac{\grave{n}}{t_{0}}=h f
$$

which is the Planck energy equivalence.
$\hat{u}_{\varphi}=\hat{\mathrm{x}} \sin \omega_{1} t \sin \grave{n} \omega_{0} t-\hat{y} \sin n \omega_{1} t \cos \grave{n} \omega_{0} t-\hat{z} \cos \omega_{1} t$
$\hat{\mathrm{A}}_{\varphi}=\hat{\mathrm{x}} \cos \grave{n} \omega_{0} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{0} t$
$\hat{\mathrm{R}}_{\varphi}=\hat{\mathrm{x}} \cos \omega_{1} t \sin \grave{n} \omega_{\mathrm{o}} t-\hat{\mathrm{y}} \cos \omega_{1} t \cos \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{z}} \sin \omega_{1} t$
First we analyse the path s_{ϕ} on which a roton propagates; it is found by integration $s=\int \mathbf{u} \mathrm{d} t$.

Slide 30: Energy of a 3D-roton

For the 3D-roton, and setting $\grave{n}=1$ we obtain

$$
\begin{aligned}
& s_{\varphi}= c \int\left(\hat{\mathrm{x}} \sin \omega_{1} t \sin \grave{n} \omega_{\mathrm{o}} t-\hat{\mathrm{y}} \sin n \omega_{1} t \cos \grave{n} \omega_{\mathrm{o}} t-\hat{\mathrm{z}} \cos \omega_{1} t\right) \mathrm{d} t \\
&= \hat{\mathrm{x}} \\
& c\left(\frac{\sin \left(\omega_{1}-\omega_{\mathrm{o}}\right) t}{2\left(\omega_{1}-\omega_{\mathrm{o}}\right)}-\frac{\sin \left(\omega_{1}+\omega_{\mathrm{o}}\right) t}{2\left(\omega_{1}+\omega_{\mathrm{o}}\right)}\right) \\
&-\hat{\mathrm{y}} c\left(\frac{\cos \left(\omega_{1}-\omega_{\mathrm{o}}\right) t}{2\left(\omega_{1}-\omega_{\mathrm{o}}\right)}+\frac{\cos \left(\omega_{\mathrm{o}}+\omega_{1}\right) t}{2\left(\omega_{\mathrm{o}}+\omega_{1}\right)}\right)-\hat{\mathrm{z}} c \frac{\sin \omega_{1} t}{\omega_{1}}
\end{aligned}
$$

A.L. Vrba

Slide 31: Energy of a 3D-roton

Three rotons sharing the same centre. The orbits are defined by $\left\{\omega_{1}, \omega_{0}\right\}=\{2,1\},\{3,1\},\{7,1\}$ all path lengths are equal to 2π if $c=1$

Slide 32: Energy of a 3D-roton

The path's radial distance from the origin evaluates to:

$$
r_{\varphi}=c \sqrt{\frac{\omega_{1}^{4}-\omega_{\mathrm{o}}^{2}\left(\omega_{1}^{2}-\omega_{\mathrm{o}}^{2}\right) \sin ^{2} \omega_{1} t}{\omega_{1}^{4}\left(\omega_{1}^{2}-\omega_{\mathrm{o}}^{2}\right)}}>\frac{c}{\omega_{1}} \quad \text { if } \quad \omega_{1}>\omega_{\mathrm{o}}
$$

and remebering $\omega_{1}=\grave{p} \grave{n} \omega_{0}$, see (2), we get
$r_{\varphi} \gtrsim \frac{c}{\grave{p} \grave{n} \omega_{0}}$

Slide 33: Energy of a 3D-roton

The activation vector \mathbf{A} of the 3D-roton is

$$
\mathbf{A}=\grave{r} l_{0} A\left(\hat{\mathrm{x}} \cos n \omega_{0} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{0} t\right)
$$

which is the same as that of the 1D-roton. Hence the action vector \boldsymbol{S}_{φ} and its norm is given by

$$
\mathcal{S}_{\varphi}=\epsilon \grave{n}(\mathbf{A} \times \mathbf{R})
$$

and the norm evaluates to

$$
\begin{aligned}
\left\|\boldsymbol{S}_{\varphi}\right\| & =\epsilon \grave{n} \grave{r}^{2} c l_{0} A^{2} \\
& =h \grave{n} \grave{r}^{2}
\end{aligned}
$$

Slide 34: Energy of a 3D-roton

$$
r_{\varphi} \gtrsim \frac{c}{\grave{p} \grave{n} \omega_{0}} \quad\left\|\mathcal{S}_{\varphi}\right\|=h \grave{n} \grave{r}^{2}
$$

let \mathbf{A} not extend over the geometric centre of s_{φ}

$$
\begin{array}{rlrl}
\grave{r} l_{0} & \leqq r_{\varphi} & \text { and using } c=\frac{l_{0}}{t_{0}} & \\
& \leqq \frac{l_{\circ}}{t_{0}} \frac{1}{\grave{p} \grave{n} 2 \pi / t_{0}} \quad \text { gives } & \grave{r} \grave{n}=\frac{1}{2 \pi \grave{p}} \\
\therefore\left\|\mathcal{S}_{\varphi}\right\| & =h \grave{r}(\grave{n} \grave{r})=h \grave{r} /(2 \pi \grave{p})=\hbar \frac{\grave{r}}{\grave{p}} & \\
& \text { or the energy } & \mathcal{E}_{\varphi}=\hbar \frac{\grave{r}}{\grave{p} t_{0}}
\end{array}
$$

Slide 35: Complex space

Instead of $x y z$-space $=\mathbb{R}^{3}$ we consider $x y z$-space $=\mathbb{C}^{3}$ and with a complex load we note the light speed could also be complex.

$$
\ell \mapsto\left\{\begin{aligned}
& \ell \mathrm{e}^{\mathrm{i} \alpha} \text { thus } A \mapsto A \mathrm{e}^{-\mathrm{i} \alpha} \text { and } R \mapsto \mapsto \begin{cases}R \mathrm{e}^{\mathrm{i} \alpha}, & \text { if } c \mapsto c \mathrm{e}^{\mathrm{i} 2 \alpha} \\
R \mathrm{e}^{-\mathrm{i} 3 \alpha}, & \text { if } c \mapsto c \mathrm{e}^{-\mathrm{i} 2 \alpha} \\
R \mathrm{e}^{-\mathrm{i} \alpha}, & \text { if } c \mapsto c\end{cases} \\
& \text { or } \\
& \ell \mathrm{e}^{-\mathrm{i} \alpha} \text { thus } A \mapsto A \mathrm{e}^{\mathrm{i} \alpha} \text { and } R \mapsto \begin{cases}R \mathrm{e}^{\mathrm{i} 3 \alpha}, & \text { if } c \mapsto c \mathrm{e}^{\mathrm{i} 2 \alpha} \\
R \mathrm{e}^{-\mathrm{i} \alpha}, & \text { if } c \mapsto c \mathrm{e}^{-\mathrm{i} 2 \alpha} \\
R \mathrm{e}^{\mathrm{i} \alpha}, & \text { if } c \mapsto c\end{cases}
\end{aligned}\right.
$$

Slide 36: Superposition of a 1D- and a 3D-roton

$\Theta_{\mathbb{Z}} \frac{\mathrm{par}}{\text { by }}\{$ in superposition with

$$
\varphi_{\dot{\mathrm{i}}}\left\{\begin{array}{l}
\mathbf{u}_{\varphi}=\mathrm{i} c \cos \theta\left(\hat{\mathrm{x}} \sin \grave{p} \omega_{\mathrm{o}} t \sin \omega_{\mathrm{o}} t-\hat{\mathrm{y}} \sin \grave{p} \omega_{\mathrm{o}} t \cos \omega_{\mathrm{o}} t-\hat{\mathrm{z}} \cos \grave{p} \omega\right. \\
\mathbf{A}_{\varphi}=\mathrm{e}^{-\mathrm{i} \pi / 4} \sqrt{\sec \theta} \grave{r} A\left(\hat{\mathrm{x}} \cos \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \omega_{\mathrm{o}} t\right) \\
\mathbf{R}_{\varphi}=\mathbf{u} \times \mathbf{A}_{\varphi}
\end{array}\right.
$$

Slide 37: Superposition of a 1D- and a 3D-roton

Here we note the following
i. The absolute velocity $\|\mathbf{u}\|=\left\|\mathbf{u}_{\varphi}+\mathbf{u}_{\gamma}\right\|=c$ for all θ and at any time t.
ii. For the 3D-roton the energy content \mathcal{E}_{φ} remains constant for all θ and is active.
iii. For the 1D-roton the energy content \mathcal{E}_{γ} varies with θ and is reactive. (Here I use the electrical engineering terminology instead of imaginary energy.)
iv. The 1D- and the 3D-roton share a common activation vector A which binds the two rotons.

Slide 38: Energy of Superpositioned 1D- and a 3D-roton

$$
\mathcal{E}_{\varphi}=\hbar \frac{\grave{r}}{\grave{p} t 0} \quad E_{\gamma}=\mathrm{i} E_{\varphi} \frac{\sin \theta}{\cos \theta}
$$

The components of the velocity vector are

$$
u_{\gamma}=c \sin \theta \quad \text { and } \quad u_{\varphi}=\mathrm{i} c \cos \theta=\sqrt{c^{2}-u_{\gamma}^{2}}
$$

and the perceived energy is

$$
E_{\Theta}=E_{\varphi} \sqrt{\frac{c^{2}}{c^{2}-u_{\gamma}^{2}}}
$$

Slide 39: Energy of Superpositioned 1D- and a 3D-roton

Having established E_{Θ}, we now, by some or other means, increase the real velocity u_{γ} by $\mathrm{d} u_{\gamma}$, thus

$$
E_{\Theta}+\mathrm{d} E_{\Theta}=E_{\varphi} \sqrt{1+\frac{\left(u_{\gamma}+\mathrm{d} u_{\gamma}\right)^{2}}{c^{2}-\left(u_{\gamma}+\mathrm{d} u_{\gamma}\right)^{2}}}
$$

therefore

$$
\mathrm{d} E_{\Theta}=E_{\varphi} \sqrt{1+\frac{\left(u_{\gamma}+\mathrm{d} u_{\gamma}\right)^{2}}{c^{2}-\left(u_{\gamma}+\mathrm{d} u_{\gamma}\right)^{2}}}-E_{\varphi} \sqrt{1+\frac{u_{\gamma}^{2}}{c^{2}-u_{\gamma}^{2}}}
$$

Slide 40: Energy of Superpositioned 1D- and a 3D-roton
and performing a series expansion on $\mathrm{d} E_{\Theta}$ gives

$$
\mathrm{d} E_{\Theta}=E_{\varphi} \frac{c u_{\gamma} \mathrm{d} u_{\gamma}}{\left(c^{2}-u_{\gamma}^{2}\right)^{3 / 2}}+\mathcal{O}\left[\mathrm{d} u_{\gamma}^{2}\right]
$$

Energy = force \times distance and force is defined by Newton's second law of motion, hence we also have

$$
\mathrm{d} E_{\mathrm{N}}=m_{i} \frac{\mathrm{~d} u_{\gamma}}{\mathrm{d} t} u_{\gamma} \mathrm{d} t
$$

where m_{i} is the inertial mass. Equating $\mathrm{d} E_{\mathrm{N}}=\mathrm{d} E_{\Theta}$ we obtain after cancelling common terms

Slide 41: Energy of Superpositioned 1D- and a 3D-roton

$$
m_{i}=E_{\varphi} \frac{c}{\left(c^{2}-u_{\gamma}^{2}\right)^{3 / 2}}
$$

and if $u_{\gamma}=0$ the above reduces to

$$
E_{\varphi}=m_{\circ} c^{2}
$$

and it then follows trivially (Slide-38) that

$$
E_{\Theta}=\frac{m_{0} c^{2}}{\sqrt{1-v^{2} / c^{2}}}
$$

1. Maxwellian dynamics describe rotons (solitons).
2. Hinting the electrostatic charge (proton-electron interaction) is different to electric charge that drives industry.
3. Rotons as photons explain Planck's $E=h f$
4. Rotons explain Newton's first law of motion in terms of a propagation of a wave.
5. Rotons explain the origin of inertial mass. (No Higgs field)
6. Rotons explain $E=m c^{2}$ and relativistic momentum.

Everything presented here does not contradict experience.

