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Slide 2: What is a wave? (The d’Alembert wave equation)

Towne1 states that the requirement for a physical condition to be

referred to as a wave, is that its mathematical representation give

rise to a partial differential equation of particular form, known as

the wave equation. The classical form

∂2w

∂p2 − 1

u2

∂2w

∂t 2 = 0 or ∇2w− 1

u2

∂2w

∂t 2 = 0.

was proposed in 1748 by d’Alembert for a one-dimensional con-

tinuum. A decade later, Euler established the equation for the

three-dimensional continuum.

1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.
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Slide 3: Electromagnetic Bimodal Wave Equation & Maxwell
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ŷ
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Figure 1: Illustrating the vectors of an EM-wave
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Slide 4: Electromagnetic Bimodal Wave Equation & Maxwell

(p) dsc−−→by M(u,B,E) =



E = u×B (activation by B) (a)

u = 1

∥B∥2 B×E (vectoring by B×E) (b)

B = 1

∥u∥2 E×u (reactivation by E) (c)


M(u,B,E) predicts the Maxwell equations in vacuum,
that is, M(u,B,E) is the fundamental mathematical ex-
planation for the electromagnetic wave phenomena.
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Slide 5: Electromagnetic Bimodal Wave Equation & Maxwell

To show that M(u,B,E) is the superordinated mathematical formu-

lation for the Maxwell equations is the task we tackle now:

But, first we need to evaluate the triple vector products ∇× (u×B)

and ∇× (E×u), which we expand using general vector analytic

methods.

∇× (u×B) = u(∇·B)−B(∇·u)− (u ·∇)B+ (B ·∇)u

∇× (E×u) = E(∇·u)−u(∇·E)− (E ·∇)u+ (u ·∇)E
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Slide 6: Electromagnetic Bimodal Wave Equation & Maxwell

∇·u = 0 because c and û(t ) are not functions of x, y , and z

∇·B = 0 because B and B̂(t ) are not functions of x, y , and z

∇·E = 0 ditto, because E = u×B

(B ·∇)u = 0 because
(
Bx

∂

∂x
+By

∂

∂y
+Bz

∂

∂z

)
cû(t ) = 0

(E ·∇)u = 0 ditto

(u ·∇)B = ?

(u ·∇)E = ?
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Slide 7: Electromagnetic Bimodal Wave Equation & Maxwell

u ·∇ = ∂

∂t
because u ·∇ = ∂x

∂t

∂

∂x
+ ∂y

∂t

∂

∂y
+ ∂z

∂t

∂

∂z
= ∂

∂t

and that leaves us with

∇× (u×B) =����u(∇·B)−����B(∇·u)+����(B ·∇)u− (u ·∇)B =−∂B

∂t

∇× (E×u) =����E(∇·u)−����u(∇·E)+ (u ·∇)E−����(E ·∇)u = ∂E

∂t
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Slide 8: Electromagnetic Bimodal Wave Equation & Maxwell

Applying a ‘left and right side’ curl operation on M(u,B,E)(a) and

(c) to obtain

∇×E=∇× (u×B) =−∂B

∂t

∇×B= 1

∥u∥2 ∇× (E×u) = 1

c2

∂E

∂t

and on slide 10 we established ∇·B = 0 and ∇·E = 0. Thus we have

the Maxwell equations in vacuum if we can show that c−2 = ϵ0µ0.
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Slide 9: Electromagnetic Bimodal Wave Equation & Maxwell

Because, ∇2E− 1

c2

∂2E

∂t 2 = 0 and ∇2B− 1

c2

∂2B

∂t 2 = 0

are derived from the Maxwell equations, proves that M(u,B,E) is a

new formulation for bimodal-waves as per Towne2 (Slide 3)

(p) dsc−−→by M(u,B,E) =



E = u×B (activation by B) (a)

u = 1

∥B∥2 B×E (vectoring by B×E) (b)

B = 1

∥u∥2 E×u (reactivation by E) (c)


2 Towne, Wave phenomena.
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Slide 10: Classical interpretation of an Electromagnetic Plain Wave

z

x

y
n

E

B

E(z, t ) = E0 cos(kn̂ ·z−ωt )

B(z, t ) = B0 cos(kn̂ ·z−ωt )

E0 · n̂ = 0, B0 · n̂ = 0, B0 = kn̂×E0, k = ω

c
, n̂ = ẑ
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Slide 11: The Rotary Wave (think propeller)

(p) dsc−−→by M(u,A,R) =



R = u×A (activation by A) (a)

u = 1

∥A∥2 A×R (vectoring by A×R) (b)

A = 1

∥u∥2 R×u (reactivation by R) (c)


where A = l A Â(t ) is the activation-flux vector,

l is the length of the vector,

A an elementary quantity with units

and Â a unitless unity vector.
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Slide 12: The Rotary Wave (think propeller)

∇·A = 0 ∇·R = 0

∇×A = .ϵ .µ
∂R

∂t
∇×R =−∂A

∂t

A solution is the quantised rotary wave γ

γ
par−−→by


u = ẑc

A = r loA
(
x̂cosnωot + ŷsin ǹωot

)
R = cr loA

(−x̂sin ǹωot + ŷcos ǹωot
)
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Slide 13: The Rotary Wave (think propeller)

z

x

y

lo
u

A

R

u = ẑc, c = lo fo

A = loA
(
x̂cosωot + ŷsinωot

)
R = cloA

(−x̂sinωot + ŷcosωot
)

R = (u×A) and u = 1

A2 (A×R) and A = 1

c2 (R×u)

lo
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Slide 14: Properties of Vacuum (Two Assertions)

Assertions used to describe an EM-wave

a) An elementary EM-wave  exhibits power h/t 2, where h is

the Planck constant and t = 1 second. This requires B to be

an elementary field.

b) This elementary wave transports an electric charge e every

one second which is a wave current.
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Slide 15: Properties of Vacuum (Two Assertions)

Assertions used to describe a Rotary wave

a) An elementary rotary wave  has action h. This requires A
to be an elementary activation-flux vector.

b) This elementary rotary wave transports an elementary load

l.

We need to assign some units to the elementary load. I propose

a new unit L, the leyden, honouring the Leyden jar.

(Hinting that the electron is not the carrier of electric charge that

drives our industry.)
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Slide 16: Action of a rotary wave

Let’s consider a the rotary wave γ

γ(p) dsc−−→by M(u,A,R) =



R = u×A (a)

u = 1

∥A∥2
A×R (b)

A = 1

∥u∥2
R×u (c)



γ
par−−→by


u = ẑc

A = r loA
(
x̂cosnωot + ŷsin ǹωot

)
R = cr loA

(−x̂sin ǹωot + ŷcos ǹωot
)
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Slide 17: Properties of Vacuum

u = 1

∥A∥2 A×R

On the premise that A × R is indicative of the wave action, we

multiply left and right by h and substitute ||A|| = loA

∥hu∥ =
∥∥∥∥ h

l 2
o A2

A×R

∥∥∥∥
∴ h =

[
h

l 2
o A2c

](
∥A∥∥R∥

)
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Slide 18: Rotary Action

Action is momentum times distance. ⇒ Therefore, rotary-

action is rotary momentum times the angle θ subtended, that

is rot = Iωθ. Hence we can formulate the quantised rotational

action as

hrot = ϱh =kll 2
oωoθ

where k is a dimensionless proportionality constant of unknown

value, scaling ll 2
oωoθ to the rotational-action hrot and here ϱ =

1 Lkg–1 (leyden per kilogram) a correction factor to satisfy the

dimensionality of above. Also, in a quantised system θ = 1 radian.
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Slide 19: Rotary Action

Because lo = cto = c/ fo to obtain ωo = 2π fo = 2πc/lo hence hrot

is also expressed as:

hrot = ϱh = 2πkllocθ

Because the load is carried by A which has a magnitude ∥A∥ = loA,

therefore we can also postulate the elementary rotary-action

hrot =χloAθ

where χ is part of a constant to be determined. Also note that A is

a quantised quantity.
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Slide 20: Property of Vacuum

hrot = ϱh = 2πkllocθ =χloAθ

thus we get

A = 2πklc

χ
hence ∥A∥ = 2πklolc

χ

and using above in

h =
[

h

l 2
o A2c

](
∥A∥∥R∥

)
gives

=
[

h

l 2
o A2c

](2πklolc

χ
∥R∥

)
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Slide 21: Property of Vacuum

h =
[

h

l 2
o A2c

](2πklolc

χ
∥R∥

)

but ∥R∥ = cloA which gives after defining a further constant

[
l 2
o

χ

]

h =
[

h

l 2
o A2c

][
l 2
o

χ

]
2πklc2 A

We are now in the position to define the quantised activator as

A = h

2πkl
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Slide 22: Property of Vacuum

h =
[

h

l 2
o A2c

](2πklolc

χ
∥R∥

)

but ∥R∥ = cloA which gives after defining a further constant

[
l 2
o

χ

]

h =
[

h

l 2
o A2c

][
l 2
o

χ

]
2πklc2 A

We are now in the position to define the quantised activator as

A = h

2πkl
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Slide 23: Property of Vacuum

but only if

1 =
[

h

l 2
o A2c

][
l 2
o

χ

]
c2 using A = h

2πkl
to replace A to get

1 =
[

4π2k2 l2

l 2
ohc

][
l 2
o

χ

]
c2 which requires χ= 4π2k2 l2c

h
, hence

1 =
[

4π2k2 l2

l 2
ohc

][
l 2
oh

4π2k2 l2c

]
c2 = .ϵ .µc2 from which we get

.ϵ =
4π2k2 l2

l 2
ohc

and .µ= l 2
oh

4π2k2 l2c
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Slide 24: Roton a soliton that underlies Maxwellian dynamics.

R = (u×A) and u = 1

A2
(A×R) and A = 1

c2
(R×u)

R par−−→by


u = c û

A = r̀ loA Â

R = cr̀ loAR̂

where r̀ a unitless scaling factor. The simultaneous algebraic vector equa-

tion set

R̂ = û × Â û = Â× R̂ Â = R̂× û.

has infinitely many solutions, some of which can be found by a succession

of Euler rotations. Each solution describes a particular roton type.
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Slide 25: 1D and 2D-Roton: R̂ = û × Â, û = Â× R̂, Â = R̂ × û.

1D-Roton Linear propagation path along the z-axis (photon like)

ûγ = ẑ

Âγ = x̂cos ǹωot + ŷsin ǹωot

R̂γ =−x̂sin ǹωot + ŷcos ǹωot

2D-Roton Circular propagation path in the xy-plane centred at the

origin

û⊙ = x̂sin ǹωot − ŷcos ǹωot

Â⊙ = x̂cos ǹωot + ŷsin ǹωot or ẑ

R̂⊙ = ẑ or x̂cos ǹωot + ŷsin ǹωot

where ǹ a unitless scaling factor
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Slide 26: 3D-Roton: R̂ = û × Â, û = Â× R̂, Â = R̂ × û.

3D-Roton Closed curved, or wound up, path in xyz-space centred

at the origin.

ûϕ = x̂sinω1t sin ǹωot − ŷsinnω1t cos ǹωot − ẑcosω1t

Âϕ = x̂cos ǹωot + ŷsin ǹωot

R̂ϕ = x̂cosω1t sin ǹωot − ŷcosω1t cos ǹωot + ẑsinω1t

(1)

where ω1 = p̀ǹωo and where p̀ is a prime integer ensuring that the

path is repeated in periods of to because ωot = 2π.
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Slide 27: Energy of a 1D-roton

γ
par−−→by


u = ẑc

A = r loA
(
x̂cosnωot + ŷsin ǹωot

)
R = cr loA

(−x̂sin ǹωot + ŷcos ǹωot
)

Using hrot = ϱh = 2πkllocθ from Slide-19 we obtain the action of

γ is hγ = r̀ 2nhrot =klr̀ 2l 2
onωo . Therefore the action vector γ is

given by (Slide-20)

γ = .ϵǹ(A×R)

= .ϵǹr̀ 2(
loAÂ(t )× loRR̂(t )

)
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Slide 28: Energy of a 1D-roton

γ = .ϵǹ(A×R)

= .ϵǹr̀ 2(
loAÂ(t )× loRR̂(t )

)
and the norm evaluates to∥∥γ∥∥= .ϵǹr̀ 2cloA2

= hǹr̀ 2

Therefore, with r̀ = 1 the rotary wave γ carries an energy content

γ = h
ǹ

to
= h f

which is the Planck energy equivalence.
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Slide 29: Energy of a 3D-roton

ûϕ = x̂sinω1t sin ǹωot − ŷsinnω1t cos ǹωot − ẑcosω1t

Âϕ = x̂cos ǹωot + ŷsin ǹωot

R̂ϕ = x̂cosω1t sin ǹωot − ŷcosω1t cos ǹωot + ẑsinω1t

(2)

First we analyse the path sφ on which a roton propagates; it is

found by integration s = ∫
udt .
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Slide 30: Energy of a 3D-roton

For the 3D-roton, and setting ǹ = 1 we obtain

sϕ = c
∫ (

x̂sinω1t sin ǹωot − ŷsinnω1t cos ǹωot − ẑcosω1t
)
dt

= x̂c

(
sin

(
ω1 −ωo

)
t

2(ω1 −ωo )
− sin

(
ω1 +ωo

)
t

2(ω1 +ωo )

)

− ŷc

(
cos

(
ω1 −ωo

)
t

2(ω1 −ωo )
+ cos

(
ωo +ω1

)
t

2(ωo +ω1)

)
− ẑc

sinω1t

ω1
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Slide 31: Energy of a 3D-roton

Three rotons sharing the same centre. The orbits are defined by

{ω1,ωo } = {2,1}, {3,1}, {7,1} all path lengths are equal to 2π if c = 1
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Slide 32: Energy of a 3D-roton

The path’s radial distance from the origin evaluates to:

rϕ = c

√√√√ω4
1 −ω2

o (ω2
1 −ω2

o )sin2 ω1t

ω4
1(ω2

1 −ω2
o )

> c

ω1
if ω1 > ωo

and remebering ω1 = p̀ǹωo , see (2), we get

rϕ⪆
c

p̀ǹωo
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Slide 33: Energy of a 3D-roton

The activation vector A of the 3D-roton is

A = r̀ loA
(
x̂cosnωot + ŷsin ǹωot

)
which is the same as that of the 1D-roton. Hence the action vector

ϕ and its norm is given by

ϕ = .ϵǹ(A×R)

and the norm evaluates to∥∥ϕ∥∥= .ϵǹr̀ 2cloA2

= hǹr̀ 2
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Slide 34: Energy of a 3D-roton

rϕ⪆
c

p̀ǹωo

∥∥ϕ∥∥= hǹr̀ 2

let A not extend over the geometric centre of sϕ

r̀ lo ≦ rϕ and using c = lo
to

≦
lo
to

1

p̀ǹ2π/to
gives r̀ ǹ = 1

2πp̀

∴
∥∥ϕ∥∥= hr̀ (ǹr̀ ) = hr̀ /(2πp̀) = ℏ

r̀

p̀

or the energy ϕ = ℏ
r̀

p̀ to
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Slide 35: Complex space

Instead of xyz-space =R3 we consider xyz-space =C3 and with

a complex load we note the light speed could also be complex.

l 7→



leiα thus A 7→ Ae−iα and R 7→


Reiα, if c 7→ cei2α

Re−i3α, if c 7→ ce−i2α

Re−iα, if c 7→ c

or

le−iα thus A 7→ Aeiα and R 7→


Rei3α, if c 7→ cei2α

Re−iα, if c 7→ ce−i2α

Reiα, if c 7→ c
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Slide 36: Superposition of a 1D- and a 3D-roton

Θz
par−−→by



γr


uγ = ẑc sinθ

Aγ = eiπ/4
p

secθ
√

r̀/(2πp̀) A
(
x̂cosωot + ŷsinωot

)
Rγ = u×Aϕ

in superposition with

ϕi


uϕ = ic cosθ

(
x̂sin p̀ωot sinωot − ŷsin p̀ωot cosωot − ẑcos p̀ωot

)
Aϕ = e−iπ/4

p
secθ r̀ A

(
x̂cosωot + ŷsinωot

)
Rϕ = u×Aϕ
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Slide 37: Superposition of a 1D- and a 3D-roton

Here we note the following

i. The absolute velocity ∥u∥ = ∥∥uϕ+uγ
∥∥= c for all θ and at any

time t .

ii. For the 3D-roton the energy content ϕ remains constant for

all θ and is active.

iii. For the 1D-roton the energy content γ varies with θ and is

reactive. (Here I use the electrical engineering terminology

instead of imaginary energy.)

iv. The 1D- and the 3D-roton share a common activation vector

A which binds the two rotons.
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ϕ = ℏ
r̀

p̀ t0
Eγ = iEϕ

sinθ

cosθ

The components of the velocity vector are

uγ = c sinθ and uϕ = ic cosθ =
√

c2 −u2
γ

and the perceived energy is

EΘ = Eϕ

√√√√ c2

c2 −u2
γ
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Having established EΘ, we now, by some or other means, in-

crease the real velocity uγ by duγ, thus

EΘ+dEΘ = Eϕ

√√√√1+ (uγ+duγ)2

c2 − (uγ+duγ)2

therefore

dEΘ = Eϕ

√√√√1+ (uγ+duγ)2

c2 − (uγ+duγ)2 −Eϕ

√√√√1+
u2
γ

c2 −u2
γ
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and performing a series expansion on dEΘ gives

dEΘ = Eϕ
c uγduγ

(c2 −u2
γ)3/2

+[du2
γ]

Energy = force × distance and force is defined by Newton’s second

law of motion, hence we also have

dEN = mi
duγ
dt

uγdt

where mi is the inertial mass. Equating dEN = dEΘ we obtain after

cancelling common terms
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mi = Eϕ
c

(c2 −u2
γ)3/2

and if uγ = 0 the above reduces to

Eϕ = moc2

and it then follows trivially (Slide-38) that

EΘ = moc2√
1− v2/c2
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Slide 42: Concluding Summary

1. Maxwellian dynamics describe rotons (solitons).

2. Hinting the electrostatic charge (proton-electron interaction)

is different to electric charge that drives industry.

3. Rotons as photons explain Planck’s E = h f

4. Rotons explain Newton’s first law of motion in terms of a

propagation of a wave.

5. Rotons explain the origin of inertial mass. (No Higgs field)

6. Rotons explain E = mc2 and relativistic momentum.

Everything presented here does not contradict experience.
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