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A.L. Vrba GENERAL MAXWELLIAN DYNAMICS
Slide 2: What is a wave? (The d’Alembert wave equation)

Towne! states that the requirement for a physical condition to be
referred to as a wave, is that its mathematical representation give
rise to a partial differential equation of particular form, known as
the wave equation. The classical form

w1 0w 0 VL % w 0

- = or —_— =

op%  u? or? u? or?
was proposed in 1748 by d’Alembert for a one-dimensional con-
tinuum. A decade later, Euler established the equation for the
three-dimensional continuum.

1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.
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Slide 3: Electromagnetic Bimodal Wave Equation & Maxwell

Figure 1: Ilustrating the vectors of an EM-wave
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Slide 4: Electromagnetic Bimodal Wave Equation & Maxwell

E=uxB (activation by B) (a)
1
W(p) dsc, ./%(u,B E) = u= THE ——=BxE (vectoring by BxE) (b)

1
B= WE xu (reactivation by E) (c)
u

J (u, B, E) predicts the Maxwell equations in vacuum,
that is, /i (u, B, E) is the fundamental mathematical ex-
planation for the electromagnetic wave phenomena.
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Slide 5: Electromagnetic Bimodal Wave Equation & Maxwell

To show that J (u, B, E) is the superordinated mathematical formu-
lation for the Maxwell equations is the task we tackle now:

But, first we need to evaluate the triple vector products V x (u x B)

and V x (E xu), which we expand using general vector analytic
methods.

VxuxB)=u(V-B)-B(V-u)— (u-V)B+ (B-V)u

Vx(Exu)=E(V-u)-u(V-E)—(E-V)u+ (u-V)E
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Slide 6: Electromagnetic Bimodal Wave Equation & Maxwell

V-u=0
V-B=0
V-E=0
B-V)u=0
(E-V)u=0
(u-V)B=2?

(u-VE=?

because ¢ and (#) are not functions of x, y, and z

because B and B(t) are not functions of x, y, and z

ditto, because E=ux B

because (B 9 +B +B 9 ci()=0
Yox Yoy oz -

ditto
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Slide 7: Electromagnetic Bimodal Wave Equation & Maxwell

0x 0 dyod 0dzd 0

F)
-V=—0> V= —— -
WV gy e N = G ox T aray T otoz ot

and that leaves us with
0B
Vx (uxB)=ulV-B) -B-1) + (B-Vu—(u-V)B= T

Vx (Exu) =EN-1u) —ul~E)+ u-V)E-(E-Vu = (;—]:
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Slide 8: Electromagnetic Bimodal Wave Equation & Maxwell

Applying a ‘left and right side’ curl operation on J( (u, B, E)(a) and
(c) to obtain

VXEZVx(uxB):—a—B
ot
< B= LVX(EXU):ia_E
lull? c2 ot

and on slide 10 we established V-B =0 and V-E = 0. Thus we have
the Maxwell equations in vacuum if we can show that c2=¢ Uo-
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Slide 9: Electromagnetic Bimodal Wave Equation & Maxwell

s 10°E . 10°B
Because, V“E- 202—0 and V°‘B-— 261‘2_

are derived from the Maxwell equations, proves that /4 (u,B,E) is a
new formulation for bimodal-waves as per Towne? (Slide 3)

E=uxB (activation by B) (a)

1
W(p)—db—sy&./ﬂ(u,B,E): u= ||B||2BXE (vectoring by B x E) (b)

1
B=—=Exu (reactivation by E) (c)

llufl?

2 Towne, Wave phenomena.



A.L. Viba GENERAL MAXWELLIAN DYNAMICS

Slide 10: Classical interpretation of an Electromagnetic Plain Wave

y(/é

E(z,t) =Egcos(kh-z—wt)
B(z,t) =Bgcos(kii-z—wt)

A N A w o,
E()-IIZO, B()'l’l:O, BOZkHXEQ,kZ—,HZZ
(4
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Slide 11: The Rotary Wave (think propeller)

R=uxA (activation by A) (a)

R(p)%syi./%(u,A,R)z u= ||A||2A><R (vectoring by AxR) (b)

1
A=—Rxu (reactivation byR) (c)

MR

where A = [ AA(¢) is the activation-flux vector,
1 is the length of the vector,
A an elementary quantity with units
and A a unitless unity vector.
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Slide 12: The Rotary Wave (think propeller)

V-A=0 V-R=0
0A

OR
VxAzgyE VXR:_E

A solution is the quantised rotary wave y
u=12c
Y —F;—E;L A=rl,A(Xcosnwoyt +¥sinnw,t)
R

= crlo A(-Rsinfiw, t +§ cos hw, t)
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Slide 13: The Rotary Wave (think propeller)

A=, A(Rcoswot +9sinwet) N -

R = clo A(-Xsinwof +§cos wot)

1 1
R=(uxA) and u=—AxR) and A=—Rxu)
A2 c?
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Slide 14: Properties of Vacuum (Two Assertions)

Assertions used to describe an EM-wave

a) An elementary EM-wave M exhibits power h/ 2, where h is
the Planck constant and ¢ =1 second. This requires B to be
an elementary field.

b) This elementary wave transports an electric charge e every
one second which is a wave current.
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Slide 15: Properties of Vacuum (Two Assertions)

Assertions used to describe a Rotary wave

a) An elementary rotary wave R has action h. This requires A
to be an elementary activation-flux vector.

b) This elementary rotary wave transports an elementary load

€.

We need to assign some units to the elementary load. I propose
a new unit L, the leyden, honouring the Leyden jar.

(Hinting that the electron is not the carrier of electric charge that
drives our industry.)
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Slide 16: Action of a rotary wave

Let’s consider a the rotary wave y

R=uxA (a)
1
Yo L MwAR = Ut R ®
A= ! —=Rx (c)
llall?
u=72c
Y & {A=rloA(Xcos nwot +§sin iwgt)

R=crio A(-Rsiniwyt +cos iw,t)
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Slide 17: Properties of Vacuum

u= —2A x R
Al

On the premise that A x R is indicative of the wave action, we
multiply left and right by h and substitute ||A]| = [, A

| hull =

AxR
15 A H

n=| s | (1ama)
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Slide 18: Rotary Action

Action is momentum times distance. = Therefore, rotary-
action is rotary momentum times the angle 8 subtended, that
is Syot = Iw6. Hence we can formulate the quantised rotational
action as

ot = oh = RE120,60

where % is a dimensionless proportionality constant of unknown
value, scaling € lcz,wOH to the rotational-action h,: and here p =
1 Lkg! (leyden per kilogram) a correction factor to satisfy the
dimensionality of above. Also, in a quantised system 8 = 1 radian.
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Slide 19: Rotary Action

Because [, = ct, = ¢/ f, to obtain w, = 27 f, = 27mc/l, hence hyq
is also expressed as:

Reot = ph =21k €1y cH

Because the load is carried by A which has a magnitude ||A|l = [, A,
therefore we can also postulate the elementary rotary-action

Hrot = Y10 AO

where y is part of a constant to be determined. Also note that A is
a quantised quantity.
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Slide 20: Property of Vacuum

Mot =ph=2nR€lc =yxl,AB

thus we get

_2mktc 2nkl,€c

A hence |A| =

and using above in

h .
h= [ZCZ,ATC] (||A|| ||R||) gives

=[ L ](M

12A2¢

IRI)
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Slide 21: Property of Vacuum

(antlofc
X

h
h= R
]

2
but [|R|| = cl, A which gives after defining a further constant | —~

=

2

l
f —°] 21k € ? A
X

12A2¢

We are now in the position to define the quantised activator as

A= h
T 2nk €
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Slide 22: Property of Vacuum

(anlo tc
X

h
h= R
[ngzc IRI)

2
o

but ||R|| = ¢, A which gives after defining a further constant

=

£ e

X

; ]
12A2¢
We are now in the position to define the quantised activator as

A= h
T 2nhE
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Slide 23: Property of Vacuum

but only if
1= f L ] ¢ using A= h to replace A to get
- lgAZC X gA= 2k P 8
4P R2 €2 [ 12 4’ k2 €?
1= ”2— [—0 ¢> which requires y = u, hence
IShe X h
4n? k2 €? 2h 2 2 .
1= Zhe [47127%2520 c¢“=¢epc” from which we get
B 4n?k2€? 2h

=7 d y=—o—~
2hc ane K= mzrzez.
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Slide 24: Roton a soliton that underlies Maxwellian dynamics.

1 1
R=(uxA) and u=—AxR) and A=—(Rxu)
A2 c2

u=ci
R {A=TlAA
R=cil, AR

where 7 a unitless scaling factor. The simultaneous algebraic vector equa-
tion set

R=axA a=AxR A=Rxa.

has infinitely many solutions, some of which can be found by a succession

of Euler rotations. Each solution describes a particular roton type.
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Slide 25: 1D and 2D-Roton: R=0x A, 6i=AxR, A=Rxi.

1D-Roton Linear propagation path along the z-axis (photon like)
iy =12
Ay =KXcoshwyt+§siniw,t
f{y = —Xsinniw t+ycosnw,t

2p-Roton Circular propagation path in the xy-plane centred at the
origin

llo =Xsinnw,t —ycosnw,t
Ag =Xcosnw,t+ysinniw,t  or 2
Ro =2 or Xcosnw,t+ysinnw,t

where 7 a unitless scaling factor
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Slide 26: 3p-Roton: R=0x A, a=AxR, A=Rxa.

3p-Roton Closed curved, or wound up, path in xyz-space centred
at the origin.
llp = Xsinwitsin nw t —ysin nwitcos w,t —2cos w1t
Aq, =RXcosnw,t+ysinnw,t (1)
Rq, =Xcoswitsinfiw t —§coswitcosnw,t+2sinwit

where w1 = piiw, and where p is a prime integer ensuring that the
path is repeated in periods of f, because w,t =27.
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Slide 27: Energy of a 1D-roton

u=12c
par

. (A= rlyA(Rcos nwo t +§sinnw,t)

R=crl,A(-&sinfiw,t +jcosiw,t)
Using hyot = ph =21k €1,c0 from Slide-19 we obtain the action of

Yishy=T7 2nhor = RE rzlgnwo. Therefore the action vector Sy is
given by (Slide-20)

Sy=¢n(AxR)
=eni?(l,AA(D) x [, RR(D))
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Slide 28: Energy of a 1D-roton

=eni?(l,AA(D) x [, RR(D))

and the norm evaluates to

Therefore, with 7 =1 the rotary wave y carries an energy content
n
& = ht_ =hf
(o)

which is the Planck energy equivalence.
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Slide 29: Energy of a 3D-roton

llp =Xsinwitsinnw t—ysinnwitcos iw,t —2cos it
Xcosnw,t+ysinniw ¢ 2

f{q, =Xcoswitsinfiw,t —Jcoswitcosnw,t+2sinwit

.él]lw

First we analyse the path sy on which a roton propagates; it is

found by integration s = [udt.
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Slide 30: Energy of a 3D-roton

For the 3D-roton, and setting 72 = 1 we obtain

Sp = cf (Rsinwtsinw,t —sin nwitcos nw, t —2cos wit)ds

. (sin(wl —w,)t sin(w; + wo)t)
=Xc -
2(w1 —w,) 2(w +w,)

_yc(cos(wl —w,)t cos(w, + wl)t) _2Csinw1t

2(w1 —w,) 2(w, + w1) [
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Slide 31: Energy of a 3D-roton

Three rotons sharing the same centre. The orbits are defined by
{w1, w,} =1{2,1},{3,1},{7,1} all path lengths are equal to 27 if c =1
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Slide 32: Energy of a 3D-roton

The path’s radial distance from the origin evaluates to:

0} — 02 (0% - w?)sin® w1t c .
rp=c T > >— if wi>w
wi (W] —w?) w1

and remebering w; = pnw,, see (2), we get

c

4%

r NN
P pha,
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Slide 33: Energy of a 3D-roton

The activation vector A of the 3D-roton is
A =Tl A(Xcos nwot +§sinnw,t)

which is the same as that of the 1D-roton. Hence the action vector
S, and its norm is given by

SQD =en(AxR)
and the norm evaluates to

ISyl = eni®cl, A

€
hn
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Slide 34: Energy of a 3D-roton

c \\2

Qv

T

let A not extend over the geometric centre of s,

l
A and using ¢ = t_o
(o]
l 1 1
<2 gives fn=——
t, pn2ml i, 2np

or the energy Ep= hﬁ
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Slide 35: Complex space

Instead of xyz-space = R3 we consider xyz-space = C3 and with
a complex load we note the light speed could also be complex.

Re'®  if c— ce'2®
€e'® thus A— Ae ' *and R— { Re 39, if c— ce 12

Re™¢  ifc—c

Re3%,  if ¢ — cel2®

€e 1% thus A— Ael® and R — { Re™%, if ¢ — cei2®

Re'*, ifc—c



A.L. Vrba

GENERAL MAXWELLIAN DYNAMICS

Slide 36: Superposition of a 1D- and a 3D-roton

Oz

par
by

uy = 2csinf
Yry Ay =e"4Vsecl /) T/2np) A(kcosw,t+§sinw,t)
Ry=uxAy
in superposition with
uy, =iccos (Xsin pw,rsinw,t —ysin pw,tcos wyt —2cos pw
P34 Ap=e "/4Vsech 7 A(Rcos wyt +sinw, 1)

Ry =uxAy
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Slide 37: Superposition of a 1D- and a 3D-roton

Here we note the following

i. The absolute velocity [lull = ||u, +uy || = ¢ for all § and at any
time t.

ii. For the 3D-roton the energy content £, remains constant for
all 6 and is active.

iii. For the 1D-roton the energy content &, varies with 6 and is
reactive. (Here I use the electrical engineering terminology
instead of imaginary energy.)

iv. The 1D- and the 3D-roton share a common activation vector
A which binds the two rotons.
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Slide 38: Energy of Superpositioned 1D- and a 3D-roton

P _ . sinf
pto

Ep=h

The components of the velocity vector are

— i _ _ |22
uy = csinf and uy=iccosf=./c uy

and the perceived energy is
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Slide 39: Energy of Superpositioned 1D- and a 3D-roton

Having established Eg, we now, by some or other means, in-
crease the real velocity uy by duy, thus

(uy +duy)?
Eg+dEg = Eyp4 |1+ T du)? @+ duy)z

therefore

(wy +duy)? u
dEg = Epy |1+ 55—t Epy |1+

c? — (uy +duy)? B
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Slide 40: Energy of Superpositioned 1D- and a 3D-roton

and performing a series expansion on dEg gives

B cuyduy, 5
dE@ = E(pm + O[duy]

Energy = force x distance and force is defined by Newton's second
law of motion, hence we also have

duy
dEN = miE u}/df

where m; is the inertial mass. Equating dEy = dEg we obtain after
cancelling common terms
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Slide 41: Energy of Superpositioned 1D- and a 3D-roton

Cc

mi=Ep———s—
! ‘P(Cz_u}zl)S/z

and if uy =0 the above reduces to

Ep = moc2

and it then follows trivially (Slide-38) that

Mo c?
Ep =

1- Vz/c2
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Slide 42: Concluding Summary

1. Maxwellian dynamics describe rotons (solitons).

2. Hinting the electrostatic charge (proton-electron interaction)
is different to electric charge that drives industry.

3. Rotons as photons explain Planck’s E = hf

4. Rotons explain Newton’s first law of motion in terms of a
propagation of a wave.

5. Rotons explain the origin of inertial mass. (No Higgs field)

6. Rotons explain E = mc? and relativistic momentum.

Everything presented here does not contradict experience.
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