
The Schrödinger equation from the point of 

view of the theory of stability.

Nina Sotina

nsotina@gmail.com



In 1926, Schrödinger published an article “Quantization as 

an Eigenvalue Problem” in which he proposed the equation 

that described the wave function for a hydrogen atom

In modern quantum mechanics, the Schrödinger equation is 

known as a postulate. However, Erwin Schrödinger, himself 

derived this equation applying the methods of classical 

mechanics. Schrödinger started his derivation with the 

Hamilton-Jacobi equation
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Velocity and Hamilton's principal function   S 

are related as follows

The usage of the Hamilton –Jacobi equation by 

Schrödinger was not accidental. He viewed a 

particle as a wave packet and search for a wave 

equation. The Hamilton-Jacobi method 

allows to reduce a classical problem of 

a particle’s motion to a partial 

differential equation. 



For the motion of an electron in a hydrogen atom the 

H-J. Eq. has the following form

Schrödinger next introduced a function

He substituted           in the above form into Eq. (1) 

and obtained the following quadratic form
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Schrödinger next searched for a such function       that 

would give extreme value to the integral of the quadratic 

form 

with an additional normalization condition 

The Euler–Lagrange equation for this variational problem 

turned out to be the Schrödinger equation
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Errors in Schrödinger’s derivation

This derivation was not accepted by the scientific 

community mainly for the following reasons

1) Schrödinger assumed               to be real, while the 

Schrödinger equation has complex solutions

2) When the substitution used by Schrödinger in his 

derivation was substituted back into the equation 

obtained by his mathematical procedure, it did not 

give the original Hamilton-Jacobi equation 

3) Schrödinger used a variational principle, which 

physical meaning was not clear to the physicists. 



However, S. Eq.  gave a clear method for finding Bohr 

energy levels, and, therefore, it was taken as a postulate.

Schrödinger viewed an electron as a wave packet. He 

wrote: ‘It is, of course, strongly, suggested that we should 

try to connect        function with some vibration process in 

the atom’. Unfortunately, it was proven that an electron 

could not be modeled as a wave packet, because a wave 

packet spreads out, which contradicted the corpuscular 

behavior of a particle.

In the same year (1926) M. Born proposed the 

probabilistic interpretation of the wave function. Thus, 

mathematical ties with classical mechanics were broken.





D.Bohm was a proponent  of the causal interpretation to 

quantum mechanics. Bohm  corrected the Schrödinger‘s first 

mistake. He represented      in the form              

He substituted it into the S. Eq., separated real and imaginary 

parts, and obtained two equations

We can see that the second Eq. looks like H-J Eq. but it 

contains besides the classical potential an additional  term 
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The scientists who did not agree with the probabilistic 

interpretation of the wave function began to search for 

classical mechanics equations from which the Schrödinger 

equation would follow. 



the “quantum potential”

Bohm’s erroneous interpretations.

(1) Bohm made an erroneous conclusion that          

as

(2) Bohm  assumed, that  “quantum potential effects do not 

necessary fall off with the distance...The quantum potential

has the new feature of nonlocality implying an instantaneous 

connection between distant particles”.

Тhis Bohm’s assumption however is not supported by 

mathematical derivations
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Bohm called this termQU



(3). The Bohm made wrong assumption: he 

believed  that function has the same form on 

the entire space. However, the quantum potential  

has a concrete form only for those trajectories that 

satisfy the Schrödinger equation, and is different 

for different trajectories. Outside these trajectories, 

the form of the quantum potential is unknown.
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Let us go back to the derivation of the equation 

presented by Schrodinger and discuss the physical 

meaning of the variational principle he used.

As early as 1929 N.G. Chetaev, 

the well known expert in the

theory of stability, assumed 

that the variational principle 

used by Schrödinger extracts

from all the solutions of the 

H-J. Eq. only those solutions which are stable.
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Chetaev studied the stability of the motion of a particle, 

under the same initial conditions but under the action of 

small perturbing forces.  He introduced  , the potential 

energy associated with the perturbing forces, into H.J Eq.

He assumed that the influence of the perturbing forces at 

an arbitrary point is proportional to the density of 

trajectories at that point. For stable trajectories this influence 

must be minimal
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This condition is equivalent to:
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This variational problem reduces to equation (3)

Equation (4) looks like S. Eq, but it has additional term

That is Chetaev did not obtain the exact S. Eq.  Also  

Chetaev like Bohm, erroneously believed that              is the 

potential energy of small forces.
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It is clear, that if we introduce an unknown 

potential        in H-J. Eq., such that       equals  

𝑈𝑄 on stable trajectories, we obtain the exact 

Schrödinger Eq.   I introduce         formally into 

the equation, without defining the physical 

meaning of potential

H-J. Eq with additional term        has the 

form
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Now, using Chetaev’s method, we consider the 

motion of a particle (or the center of mass of an 

extended object) under action of small perturbing 

forces with energy      . In this case the motion 

integral of a particle takes the form:  
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The influence of the perturbing forces at an arbitrary 

point is proportional to the density of trajectories at 

that point. From point of view of the theory of 

stability, for stable trajectories this influence must be 

minimal.
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This variational problem reduces to the follow equation 

If we take                                    and 

we obtain the S.Eq,  

In case of the hydrogen atom condition (*) extracts Bohr’s 

orbits out of all  solutions.



Hydrogen atom

Let us apply the above approach to a hydrogen atom.

The Schrödinger equation for the hydrogen atom

the solutions of S. equation are

The phase of the wave function is

Thus, for the velocity of the electron on the trajectories 

obtained from the Schrödinger equation we have

All trajectories are circular!
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This result was confirmed with observation performed 

at the Institute AMOLF in the Netherlands.

The atom was placed in an electric field E and was 

excited by laser pulses. 

They obtained with a photoionization microscope the 

picture of the electron orbitals in a hydrogen atom. 

We can see that they all circular.

Physical Review Lett.,110, 

pp.213001(1-5), 2013.



Note, that the motion on these circular trajectories 

satisfies only the necessary condition of stability, 

therefore, among these trajectories there are trajectories 

that are not stable. As I said before  there is an 

additional condition for the stable trajectories 

which has the form

for the hydrogen atom.

It is this condition that extracts Bohr orbits as stable 

from all circular trajectories. This result  follows 

directly from the theory of stability
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Conclusion

The H-J. Eq ,                           for the Bohr orbits takes form

For the center of mass we have

If we compare formulas (8) and (9) we obtain

It can be seen that formula (10 ) is, in fact, the Rydberg 

formula.  
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Condition (8) is Jacobi’s integral of motion that contains 

not only energy of the center of mass 

but also the energy of rotational motion around the center of 

mass. In our case it is the precessional motion of the 

electron’s spin.

Thus, on the Bohr orbit “a quantum potential” 

equals to the energy of the precessional motion of 

the electron’s spin.
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The precession of the electron’s spin in an atom
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