Can Alice influence Bob?
 A new EPR experiment without correlation measurements.

Anton Lorenz Vrba

Ryde, United Kingdom
February 4, 2023

Presentation to the
 Harbingers of Neophysics

Copyright © 2023, A.L. Vrba; this work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives" license. (cc) BY-NC-ND

Slide 2: The Experiment

Consider an EPR experiment, the source emits circular polarised and entangled photon pairs in opposite directions to Alice and Bob. Alice uses an asymmetrical 75:25 polariser.

Question: Are the photons Bob receives skewed 25:75?

Slide 3: What is a wave? (The d'Alembert wave equation)

Towne* states that the requirement for a physical condition to be referred to as a wave, is that its mathematical representation give rise to a partial differential equation of particular form, known as the wave equation. The classical form

$$
\frac{\partial^{2} w}{\partial p^{2}}-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \quad \text { or } \quad \nabla^{2} w-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0
$$

was proposed in 1748 by d'Alembert for a one-dimensional continuum. A decade later, Euler established the equation for the three-dimensional continuum.

[^0]
A.L. Vrba

Slide 4: A Cartesian reference system

The reference system whose axis are the unit vectors \hat{x}, \hat{y} and \hat{z}

is defined by:

$$
\begin{array}{rrr}
\hat{x} \cdot \hat{y}=0 & \hat{y} \cdot \hat{z}=0 & \hat{z} \cdot \hat{x}=0 \\
\hat{x} \times \hat{y}=\hat{z} & \hat{y} \times \hat{z}=\hat{x} & \hat{z} \times \hat{x}=\hat{y}
\end{array}
$$

A.L. Vrba

Slide 5: One Plane of an Electromagnetic Wave

$$
\left\{\mathbf{E}=\mathbf{u} \times \mathbf{B}, \quad \mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E}, \quad \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u}\right\}
$$

$$
\mathbf{p}=\int \mathbf{u} \mathrm{d} t
$$

Slide 6: Electromagnetic Bimodal Wave Equation \& Maxwell

$$
\left\{\mathbf{E}=\mathbf{u} \times \mathbf{B}, \quad \mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E}, \quad \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u}\right\}
$$

Is a reformulation of the Maxwell equations.
To show this we need to evaluate the triple vector products $\nabla \times(\mathbf{u} \times \mathbf{B})$ and $\nabla \times(\mathbf{E} \times \mathbf{u})$, which we expand using general vector analytic methods.

$$
\begin{aligned}
& \nabla \times(\mathbf{u} \times \mathbf{B})=\mathbf{u}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{u})-(\mathbf{u} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{u} \\
& \nabla \times(\mathbf{E} \times \mathbf{u})=\mathbf{E}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{E})-(\mathbf{E} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{E}
\end{aligned}
$$

Slide 7: Electromagnetic Bimodal Wave Equation \& Maxwell
$\nabla \cdot \mathbf{u}=0 \quad$ because c and $\hat{\mathrm{u}}(t)$ are not functions of x, y, and z
$\nabla \cdot \mathbf{B}=0 \quad$ because B and $\hat{\mathrm{B}}(t)$ are not functions of x, y, and z
$\nabla \cdot \mathbf{E}=0 \quad$ ditto, because $\mathbf{E}=\mathbf{u} \times \mathbf{B}$
$(\mathbf{B} \cdot \nabla) \mathbf{u}=0 \quad$ because $\left(B_{x} \frac{\partial}{\partial x}+B_{y} \frac{\partial}{\partial y}+B_{z} \frac{\partial}{\partial z}\right) c \hat{\mathbf{u}}(t)=0$
$(\mathbf{E} \cdot \nabla) \mathbf{u}=0 \quad$ ditto
$(\mathbf{u} \cdot \nabla) \mathbf{B}=$? What is a convective operator on a velocity vector \mathbf{u} $(\mathbf{u} \cdot \nabla) \mathbf{E}=$?

Slide 8: Electromagnetic Bimodal Wave Equation \& Maxwell

$$
\mathbf{u} \cdot \nabla=\frac{\partial}{\partial t} \text { because } \mathbf{u} \cdot \nabla=\frac{\partial x}{\partial t} \frac{\partial}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial}{\partial y}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=\frac{\partial}{\partial t}
$$

and that leaves us with

$$
\begin{aligned}
& \nabla \times(\mathbf{u} \times \mathbf{B})=\underline{\mathbf{u}}(\nabla \cdot \mathbf{B})-\underline{\mathbf{B}}(\nabla \cdot \mathbf{u})+(\mathbf{B} \cdot \nabla) \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{B}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times(\mathbf{E} \times \mathbf{u})=\mathbf{E}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{E})+(\mathbf{u} \cdot \nabla) \mathbf{E}-(\mathbf{E} \cdot \nabla) \mathbf{u}=\frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

Slide 9: Electromagnetic Bimodal Wave Equation \& Maxwell
Applying a 'left and right side' curl operation on

$$
\begin{aligned}
& \mathbf{E}=(\mathbf{u} \times \mathbf{B}) \quad \text { and } \quad \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u} \text { gives } \\
& \nabla \times \mathbf{E}=\nabla \times(\mathbf{u} \times \mathbf{B})=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \nabla \times(\mathbf{E} \times \mathbf{u})=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

and on slide 7 we established $\nabla \cdot \mathbf{B}=0$ and $\nabla \cdot \mathbf{E}=0$. That $c^{-2}=\epsilon_{0} \mu_{0}$, see https://neophysics.org/p/1673, thus we have the Maxwell equations

Slide 10: EM-Waves; Hierarchical structure of the wave equation
(1) $\quad\left\{\mathbf{E}=\mathbf{u} \times \mathbf{B}, \quad \mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E}, \quad \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u}\right\}$
(2) $\left\{\begin{array}{ll}\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, & \nabla \cdot \mathbf{E}=0 \\ \nabla \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}, & \nabla \cdot \mathbf{E}=0\end{array}\right\}$
(3) $\quad \nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \quad$ and $\quad \nabla^{2} \mathbf{B}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}=0$

By definition, any solution of (1) is a solution of (3) But a solution of (3) is not necessarily a solution of (1)

Slide 11: The Rotary Wave (think propeller)

$$
\left\{\mathbf{R}=\mathbf{u} \times \mathbf{A}, \quad \mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R}, \quad \mathbf{A}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{R} \times \mathbf{u}\right\}
$$

where \mathbf{A} and \mathbf{R} are the magnetic and electric flux.

A solution is the quantised rotary wave γ

$$
\gamma \underset{\mathrm{by}}{\mathrm{par}}\left\{\begin{array}{l}
\mathbf{u}=\hat{\mathrm{z}} c \\
\mathbf{A}=r l_{0} A\left(\hat{\mathrm{x}} \cos n \omega_{0} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{0} t\right) \\
\mathbf{R}=\operatorname{cr} l_{0} A\left(-\hat{\mathrm{x}} \sin \grave{n} \omega_{0} t+\hat{\mathrm{y}} \cos \grave{n} \omega_{0} t\right)
\end{array}\right.
$$

Slide 12: The Rotary Wave (think propeller)

Slide 13: The Experiment

Consider an EPR experiment, the source emits circular polarised and entangled photon pairs in opposite directions to Alice and Bob. Alice uses an asymmetrical 75:25 polariser.

Question: Are the photons Bob receives skewed 25:75?

Slide 14: Calcium light source

Simon, D.S., Jaeger, G. and Sergienko, A.V. Quantum Metrology, Imaging, and Communication

The production of entangled photon pairs in calcium cascades. The two-photon decay can occur via an intermediate $m=+1$ or $m=-1$ state.

Bohr says: The amplitudes for the possibilities must be added, leading to the polarisation-entangled states $|\psi\rangle=(|L L\rangle+|R R\rangle) / \sqrt{2}=(|H H\rangle+|V V\rangle) / \sqrt{2}$.

The realist says: So that the two-photon decay is nilpotent, requires the production of two circular-polarised photons that underly Maxwellian wave structure $|\psi\rangle=(|L\rangle+|L\rangle)$ or $|\psi\rangle=(|R\rangle+|R\rangle)$

Slide 15: Describing Photons - 1

$$
\gamma \underset{\text { by }}{\mathrm{par}}\left\{\begin{array}{l}
\mathbf{u}=\hat{\mathrm{z}} c \\
\mathbf{A}=r l_{0} A\left(\hat{\mathrm{x}} \cos n \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \sin \grave{n} \omega_{\mathrm{o}} t\right) \\
\mathbf{R}=\operatorname{cr} l_{\mathrm{o}} A\left(-\hat{\mathrm{x}} \sin \grave{n} \omega_{\mathrm{o}} t+\hat{\mathrm{y}} \cos \grave{n} \omega_{\mathrm{o}} t\right)
\end{array}\right.
$$

The photons actionable quantities are defined by $\hat{\mathrm{P}}=\hat{\mathrm{A}} \times \hat{\mathrm{R}}$ (Poynting vector).

We are interested only in the photon's characteristics-matrix,

$$
\gamma \xrightarrow[\mathrm{by}]{\mathrm{dsc}}\left(\begin{array}{ccc}
0 & 0 & 1 \\
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{x}} \\
\hat{y} \\
\hat{z}
\end{array}\right)
$$

We must analyse two entangled photons in the same reference frame, defined by a right handed Euclidean space \mathbb{C}^{3} as $\llbracket x y z \rrbracket$. It is a six dimensional space where each axis, that is the x, y and z axes, are a complex \mathbb{Z}-plane. In this space we need to define the following:

- Direction of propagation is defined by $\grave{p}= \pm 1$.
- Direction of rotation is referenced to $\llbracket x y z \rrbracket$ as $\grave{r}= \pm 1$.
- The helicity of the photon is given by $\grave{s}=\grave{p} \grave{r}$, or spin $S=\grave{s} \hbar$
- A polarisation direction is x, y, or none (circular).

$$
\gamma \xrightarrow[\mathrm{by}]{\mathrm{dsc}}\left(\begin{array}{ccc}
0 & 0 & \grave{p} \\
\cos \grave{r} \omega t & \sin \grave{r} \omega t & 0 \\
-\grave{p} \sin \grave{r} \omega t & \grave{p} \cos \grave{r} \omega t & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} \\
\hat{\mathrm{z}}
\end{array}\right)
$$

$\langle 1\rangle$ The superposition of the magnetic flux vectors $\hat{A}_{A+B}=\hat{A}_{A}+\hat{A}_{B}$ must maintain the Maxwellian conditions.
$\langle 2\rangle$ Energy conservation requires that $\left|\hat{\mathrm{P}}_{\mathrm{A}}\right|+\left|\hat{\mathrm{P}}_{\mathrm{B}}\right|=2\left|\hat{\mathrm{~A}}_{\mathrm{A}+\mathrm{B}} \times \hat{\mathrm{R}}_{\mathrm{A}+\mathrm{B}}\right|^{*}$ That is the sum of the energies of the waves γ_{A} and γ_{B} is equal to the energy of the superimposed waves γ_{A} plus γ_{B}.
$\langle 3\rangle$ Linear momentum conservation requires $\hat{\mathrm{P}}_{\mathrm{A}}+\hat{\mathrm{P}}_{\mathrm{B}}=0$
$\langle 4\rangle$ Angular momentum conservation requires the helicity $\grave{s}_{\mathrm{A}}=\grave{s}_{\mathrm{B}}$.
$\langle 5\rangle$ Magnetic flux conservation requires $\hat{A}_{A}+\hat{A}_{B}=0$

* The absolute $|\hat{P}|$ is calculated with $\grave{p}=1$, and the factor 2 because of the unit vectors.

A.L. Vrba

Slide 18: Nilpotency

Clarifying $\langle 1\rangle: \hat{A}_{A+B}=\hat{A}_{A}+\hat{A}_{B}$ must also be a solution of

$$
\left\{\mathbf{R}=\mathbf{u} \times \mathbf{A}, \quad \mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R}, \quad \mathbf{A}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{R} \times \mathbf{u}\right\}
$$

that is

$$
\left\{\hat{\mathrm{R}}_{\mathrm{A}+\mathrm{B}}=\hat{\mathrm{u}} \times \hat{\mathrm{A}}_{\mathrm{A}+\mathrm{B}}, \quad \hat{\mathrm{u}}=\frac{1}{\left\|\hat{\mathrm{~A}}_{\mathrm{A}+\mathrm{B}}\right\|^{2}} \hat{\mathrm{~A}}_{\mathrm{A}+\mathrm{B}} \times \hat{\mathrm{R}}_{\mathrm{A}+\mathrm{B}}, \quad \hat{\mathrm{~A}}_{\mathrm{A}+\mathrm{B}}=\frac{1}{\|\hat{\mathrm{u}}\|^{2}} \hat{\mathrm{R}}_{\mathrm{A}+\mathrm{B}} \times \hat{\mathrm{u}}\right\}
$$

Proposition: Two photons γ_{A} and γ_{B} are said to be entangled when their superposition $\gamma_{\mathrm{A}}+\gamma_{\mathrm{B}}$ is nilpotent. Nilpotency is given when

$$
\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{A}} \\
\cos \grave{r}_{\mathrm{A}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t & 0 \\
-\grave{p}_{\mathrm{A}} \sin \grave{r}_{\mathrm{A}} \omega t & \grave{p}_{\mathrm{A}} \cos \grave{r}_{\mathrm{A}} \omega t & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{x}} \\
\hat{y} \\
\hat{\mathrm{z}}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{B}} \\
\sin \grave{r}_{\mathrm{B}} \omega t & -\cos \grave{r}_{\mathrm{B}} \omega t & 0 \\
\grave{p}_{\mathrm{B}} \cos \grave{r}_{\mathrm{B}} \omega t & \grave{p}_{\mathrm{B}} \sin \grave{r}_{\mathrm{B}} \omega t & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} \\
\hat{z}
\end{array}\right)
$$

and $\grave{p}_{\mathrm{A}}+\grave{p}_{b}=0$ and $\grave{r}_{\mathrm{A}}+\grave{p}_{\mathrm{B}}=0$. All four conditions $\langle 1\rangle$ to $\langle 5\rangle$ are fulfilled, also the helicities $\grave{s}_{\mathrm{A}}=\grave{s}_{\mathrm{B}}$ are equal.

Slide 20: Introducing polarisation

If γ_{A} is polarised in the x-orientation by a polarisation angle ϑ then that is described as follows

$$
\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{A}} \\
\cos \grave{r}_{\mathrm{A}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t & 0 \\
-\grave{p}_{\mathrm{A}} \sin \grave{r}_{\mathrm{A}} \omega t & \grave{p}_{\mathrm{A}} \cos \grave{r}_{\mathrm{A}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} e^{i \vartheta} \\
\hat{\mathrm{z}}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{B}} \\
\sin \grave{r}_{\mathrm{B}} \omega t & -\cos \grave{r}_{\mathrm{B}} \omega t & 0 \\
\grave{p}_{\mathrm{B}} \cos \grave{r}_{\mathrm{B}} \omega t & \grave{p}_{\mathrm{B}} \sin \grave{r}_{\mathrm{B}} \omega t & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} \\
\hat{\mathrm{z}}
\end{array}\right)
$$

If $\vartheta=\pi / 2$ then γ_{A} is linearly polarised in the x-axis, but if $0 \leq \vartheta \leq \pi / 2$ then the photon has elliptical polarisation. Here $\hat{y} e^{i \vartheta}$ is a unit vector defining an axis that is orthogonal to both \hat{x} and \hat{z}, where the \hat{y}-axis is rotated into the complex plane.

Slide 21: Introducing polarisation

If γ_{A} is polarised in the x-orientation by a polarisation angle ϑ then that is described as follows

$$
\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{A}} \\
\cos \grave{r}_{\mathrm{A}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t & 0 \\
-\grave{p}_{\mathrm{A}} \sin \grave{r}_{\mathrm{A}} \omega t & \grave{p}_{\mathrm{A}} \cos \grave{r}_{\mathrm{A}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} e^{i \vartheta} \\
\hat{\mathrm{z}}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{B}} \\
\sin \grave{r}_{\mathrm{B}} \omega t & -\cos \grave{r}_{\mathrm{B}} \omega t & 0 \\
\grave{p}_{\mathrm{B}} \cos \grave{r}_{\mathrm{B}} \omega t & \grave{p}_{\mathrm{B}} \sin \grave{r}_{\mathrm{B}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} \\
\hat{\mathrm{z}}
\end{array}\right)
$$

Because of the asymmetry in γ_{A} and γ_{B} we immediately recognise that the entanglement condition $\langle 1\rangle$ is violated, because $\hat{A}_{A+B}=\hat{A}_{A}+\hat{A}_{B}$ is not a solution of the simultaneous algebraic equations

$$
\left\{\mathbf{R}=\mathbf{u} \times \mathbf{A}, \quad \mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R}, \quad \mathbf{A}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{R} \times \mathbf{u}\right\}
$$

Slide 22: Entanglement maintains nilpotency

The Maxwellian conditions of entanglement auto-polarise γ_{B} Yes spooky action at a distance.

$$
\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{A}} \\
\cos \grave{r}_{\mathrm{A}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t & 0 \\
-\grave{p}_{\mathrm{A}} \sin \grave{r}_{\mathrm{A}} \omega t & \grave{p}_{\mathrm{A}} \cos \grave{r}_{\mathrm{A}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} e^{i \vartheta} \\
\hat{\mathrm{z}}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \grave{p}_{\mathrm{B}} \\
\sin \grave{r}_{\mathrm{B}} \omega t & -\cos \grave{r}_{\mathrm{B}} \omega t & 0 \\
\grave{p}_{\mathrm{B}} \cos \grave{r}_{\mathrm{B}} \omega t & \grave{p}_{\mathrm{B}} \sin \grave{r}_{\mathrm{B}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} e^{i \vartheta} \\
\hat{\mathrm{y}} \\
\hat{\mathrm{z}}
\end{array}\right)
$$

The superposition $\hat{\mathrm{A}}_{\mathrm{A}_{X}+\mathrm{B}_{Y}}$ is given by

$$
\begin{aligned}
\chi \hat{\mathrm{A}}_{\mathrm{A}_{X}+\mathrm{B}}^{Y} &
\end{aligned}=\left(\begin{array}{ccc}
\cos \grave{r}_{\mathrm{A}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} e^{i \vartheta} \\
\hat{\mathrm{z}}
\end{array}\right)+\left(\begin{array}{cc}
\sin \grave{r}_{\mathrm{B}} \omega t & -\cos \grave{r}_{\mathrm{B}} \omega t \\
0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} e^{i \vartheta} \\
\hat{\mathrm{y}} \\
\hat{\mathrm{z}}
\end{array}\right) .
$$

Slide 23: Entanglement maintains nilpotency

The superposition $\hat{A}_{A_{X}+B_{Y}}$ is given by

$$
\left.\begin{array}{rl}
\chi \hat{\mathrm{A}}_{\mathrm{A}_{X}+\mathrm{B}_{Y}} & =\left(\begin{array}{lll}
\cos \grave{r}_{\mathrm{A}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} e^{i \vartheta} \\
\hat{\mathrm{z}}
\end{array}\right)+\left(\begin{array}{ll}
\sin \grave{r}_{\mathrm{B}} \omega t & -\cos \grave{r}_{\mathrm{B}} \omega t \\
0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} e^{i \vartheta} \\
\hat{\mathrm{y}} \\
\hat{\mathrm{z}}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\cos \grave{r}_{\mathrm{A}} \omega t+\sin \grave{r}_{\mathrm{B}} \omega t & \sin \grave{r}_{\mathrm{A}} \omega t-\cos \grave{r}_{\mathrm{B}} \omega t \\
0
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}}\left(1+e^{i \vartheta}\right) \\
\hat{\mathrm{y}}\left(1+e^{i \vartheta}\right. \\
2 \hat{\mathrm{z}}
\end{array}\right)
\end{array}\right) .
$$

and provides a solution to

$$
\left\{\mathbf{R}=\mathbf{u} \times \mathbf{A}, \quad \mathbf{u}=\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A} \times \mathbf{R}, \quad \mathbf{A}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{R} \times \mathbf{u}\right\}
$$

Slide 24: The Experiment

Consider an EPR experiment, the source emits circular polarised and entangled photon pairs in opposite directions to Alice and Bob. Alice uses an asymmetrical 75:25 polariser.

Question: Are the photons Bob receives skewed 25:75?
Answer: Yes, they are skewed 25:75! And faster than light communication is possible!

[^0]: * Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.

