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Abstract: A mathematical framework is introduced in which gauge symmetries and

field interactions are unified through a higher-dimensional geometric structure. The

special orthogonal gauge group R(3)SO(3), embedded in R9, supports a formulation

where Maxwell’s equations, spatial quantisation, and interaction fields arise naturally

from a shared underlying principle.

At the core lies a system of field equations involving vector cross and dot opera-

tions that reproduce classical Maxwell behaviour while suggesting deeper topological

and structural constraints. These field equations further imply a discrete geometry

of space, potentially addressing questions of quantisation and field stability from

first principles.

This approach offers a mathematically smooth, singularity-free alternative to

conventional Lie-algebra-based gauge theories, embedding known field laws in a

structure that supports both unification and quantisation. In this setting, gravita-

tional and weak interactions may be seen as emergent from symmetry breaking,

while solitonic structures offer insight into particle structure, mass, and charge.

The framework proposes a generalisation of gauge theory that invites further

examination—both as a conceptual unification and as a constructive model for

fundamental physical interactions.

A New Perspective on Gauge Symmetry

The connection between physical forces and underlying symmetries is a cornerstone

of modern theoretical physics. Traditionally, this connection has been encoded

through gauge theory frameworks based on Lie algebras and infinitesimal gener-

ators. While highly successful, these tools leave certain foundational questions

open—particularly those concerning the discrete structure of space, field quantisa-

tion, and the role of singularities in physical models.

This work explores a complementary formulation, built upon full vectorial op-

erations within a higher-dimensional rotational structure. It seeks to retain the

geometric intuition behind gauge symmetry while allowing for a more direct embed-

ding of field equations, potentially free of singularities and with naturally emergent

quantised solutions.

The special orthogonal group R(3)SO(3) ⊂ SO(3×3), realised in a nine-dimensional

manifold, forms the mathematical basis for this construction. The core field sys-

tem introduced here leads directly to the vacuum Maxwell equations, while also

permitting new interpretations of field aggregation, soliton formation, and energy

transport.

This formulation begins from a geometric principle in which symmetry is ex-

pressed through full vectorial rotations across higher-dimensional spaces. The result-
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ing field equations reproduce the structure of classical electromagnetism in vacuum,

but do so as part of a broader system in which topological stability, quantised struc-

ture, and field coherence arise naturally from the underlying geometry.

The intent here is not to assert replacement, but to offer a shift in perspective—a

foundational lens through which familiar physical laws may be reinterpreted and

extended. In that sense, this work proceeds as an invitation: to explore the geometric

and physical consequences of an extraordinary orthogonal symmetry, and to follow

where its structure leads.

The structure of this manuscript reflects a gradual build-up from basic algebraic

definitions toward applications in field theory, soliton modelling, and ultimately, rein-

terpretations of known forces. To guide the reader through this layered development,

a detailed table of contents follows.
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P A R T I

The R(3)SO(3) Framework and Maxwell

Guiding Philosophy

Maxwell’s field equations are well understood, yet they do not provide a satisfactory

explanation for the wave-particle duality of light. In the 1930s, polarisation was

considered a superposition of linear states. However, it is now known that photons

can acquire geometric phase (Berry phase), carry orbital angular momentum in

addition to intrinsic spin, and undergo spontaneous parametric down-conversion

(SPDC) into entangled pairs. These findings challenge the sufficiency of superposi-

tion as a complete description, suggesting that a deeper structure underlies photonic

behaviour.

(5)
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If we model the photon—the particle, not the wave—as a quantised topological

electromagnetic vortex, then its intrinsic structure may be expressed as νφ
ψ

=
1 0 0

0 cosωst sinωst
0 −sinωst cosωst

x̂ŷ
ẑ

 ,

where ν denotes the propagation vector, φ the magnetic flux, and ψ the electric

flux within a quantised unit of space. This describes a soliton supported by its own

fields—an entity that bridges the wave and particle descriptions.

We may generalise this by introducing complex or imaginary-axis rotations to

describe polarisation: νφ
ψ

=
1 0 0

0 eiθ cosωst sinωst

0 −sinωst eiθ cosωst

x̂ŷ
ẑ

 ,

with ellipticity ε= cosθ, or by rotating the velocity vector itself: νφ
ψ

=
eiθ 0 0

0 cosωst sinωst
0 −sinωst cosωst

x̂ŷ
ẑ

 .

Such forms suggest how light’s propagation may respond to the medium while

preserving the effective causal speed—an interplay that invites deeper examination

of the underlying field structure.

This led to the identification of a closed vector system:

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
,

which encodes a mutually reinforcing relationship among three orthogonal field

vectors. This system does not arise from imposed constraints or external potentials,

but from an intrinsic symmetry in the vector algebra itself.

Rather than employing imaginary rotations, the framework introduces a nine-

dimensional real vector space, mathematically constructed to support transforma-

tions that extend conventional rotational symmetries. The orthogonal gauge groups

SO(3×3) and R(3)SO(3), embedded in R9, offer a natural structure for field interac-

tions that respect this extended symmetry.

Within this framework, topologically structured solitons—including spherular

or multi-axial vortices—can be described by more general rotation matrices. For

example: νφ
ψ

=
 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

x̂ŷ
ẑ

 .

This description generalises the rotation to three angles, accommodating richer

solitonic behaviour. Its full implications unfold in the subsequent sections, where

the geometry of these rotations begins to illuminate questions of field layering,

structure, and interaction.

(6)
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1 R(3)SO(3): Special Orthogonal Gauge Group

1.1 The Ansatz

A X I O M 1 . 1 : Cross Product Structure in SO(3).

For any rotation matrix R ∈ SO(3), the third row is given by the cross product of the

first two rows:

R3 = R1 ×R2.

This follows from the definition of SO(3), which requires that the rows of R form an

orthonormal right-handed basis in R3, ensuring that R3 is uniquely determined by

R1 and R2.

D E F I N I T I O N 1.1: Cyclicity of Unit Vector Cross Products. A set of unit vectors {a⃗, b⃗, c⃗}
in SO(3) satisfies unit cyclicity if it obeys the transformation:

a⃗m = b⃗n × c⃗n , b⃗m = c⃗n × a⃗m , c⃗m = a⃗m × b⃗m ,

with m = n + 1, such that the sequence remains periodic and satisfies a⃗m = a⃗0,

b⃗m = b⃗0, and c⃗m = c⃗0.

This condition, unit cyclicity, ensures that the vectors a⃗, b⃗, c⃗ maintain their mu-

tual orthogonality and unit length under successive transformations, stabilising the

rotational sequence without convergence or divergence.

Consider a solution matrix S ∈ SO(3), where the rows are unit vectors:

a⃗ := S1, b⃗ := S2, c⃗ := S3.

Cross product cyclicity guarantees the following properties:

1. The vectors a⃗, b⃗, and c⃗ retain their orthogonal orientation, meaning a reference

frame undergoing rotation preserves its mutually perpendicular directions.

2. If cyclicity = 1, then the vectors remain unit vectors throughout repeated

transformations.

3. If cyclicity < 1, then under repeated cross-product transformations, a⃗, b⃗, and c⃗
converge to zero.

4. If cyclicity > 1, then under repeated cross-product transformations, a⃗, b⃗, and c⃗
diverge to infinity.

5. While unit cyclicity heuristically implies detS =±1, the reverse is strictly true:

detS = 1 ensures unit cyclicity, but unit cyclicity may still allow for detS =−1
in specific cases.

The condition detS = 1 ensures proper rotations (i.e., no reflections or change

in handiness) and preserves inner products, guaranteeing that unit vectors remain

mutually orthogonal.

Now, if S contains complex-valued coefficients of unit modulus, then in general,

detS ̸= 1, which has traditionally been interpreted as a loss of orthogonality. However,

by designing a cross product which normalises itself:

a⃗m = b⃗n × c⃗n

b⃗n · b⃗n
, b⃗m = c⃗n × a⃗m

a⃗m · a⃗m
, c⃗m = a⃗m × b⃗m ,

(7)
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unit cyclicity is restored, ensuring that the cross-product sequence remains struc-

turally valid. However, for these transformations to represent proper rotations, ad-

ditional constraints must be imposed to enforce detS, a condition that will be ad-

dressed in detail in Section 1.2 (pp. 8).

D E F I N I T I O N 1.2: Field Equation System in R(3)SO(3). The field equation system M
in the R(3)SO(3) framework is defined as:

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
,

where ν is the unit velocity vector, φ is the magnetic field vector, and ψ is the electric

field vector.

This self-consistent vector system will be shown to recover Maxwell’s equations

in vacuum, and also support structured, quantised solutions beyond classical elec-

tromagnetism. We readily identify in the following system:

Poynting’s energy flow: ν= φ×ψ
φ ·φ ,

Ampère-Maxwell Law (vacuum): φ= ψ×ν
ν ·ν ,

Faraday’s Law of Induction: ψ= ν×φ.

If {ν,φ,ψ} are time-dependent, then M represents a wave equation system

describing solitons. The trajectory of the wave is given by

s⃗ =
∫
νdt ,

which can be open (photon), closed circular, or closed spherular paths. While con-

ventional wave theory in vacuum imposes linear propagation along geodesics, the

framework developed here permits coherent, curved propagation paths—including

circular and spherular forms—emerging from internal field geometry. The construc-

tion of such spherular paths is formalised later in Lemma 5.2 (pp. 32), and visualised

in Figure 1 (pp. 9).

1.2 Triaxial Rotations in SO(3): A Restricted Rotational Framework

This framework adopts a specific subset of the full SO(3) rotation group, referred

to as triaxial rotations. These are parameterised by a triple of angles (αs ,αø,αw ),

corresponding to sequential rotations about the axes x, y, and z, where z= x×y.

The restriction to triaxial rotations serves a twofold purpose: it facilitates ex-

tension to higher-dimensional rotational structures, such as R(3)SO(3), and pre-

serves consistency when generalising from translational to angular quantities. This

shift—replacing spatial displacement vectors (in metres) with angular displacement

vectors (in radians), but retaining the same orthonormal basis—establishes a princi-

ple we refer to as frame duality.

D E F I N I T I O N 1.3: Angle Vector and Frame Duality. We define the angle vector as

ϖ⃗= x̂αs + ŷαø + ẑαw ,

(8)



TOWARDS A QUANTUM UNIFIED FIELD THE ORY A.L. Vrba

where the angles αs ,αø,αw are expressed in radians. The unit vectors (x̂ , ŷ , ẑ ) main-

tain their usual spatial interpretation, but now also represent the axes of angular

displacement.

This dual usage of the frame allows for a unified treatment of translational and

rotational quantities, forming the basis of frame duality: a conceptual symmetry in

which directionality is preserved across both spatial and angular domains.

The angle vector ϖ⃗ defines a sequential rotation matrix I (ϖ⃗), constructed by

applying three component rotations on the identity matrix I —first about z by αw ,

then about y by αø, and finally about x by αs . This follows the triaxial rotation

convention introduced by Bryan and Tait.

The structure gives rise to three canonical forms of the rotation matrix, which

respectively describe:

• a planar photonic mode (ϖ⃗= x̂αs),

• a toroidal mode (ϖ⃗= x̂αs + ŷαø),

• and a fully spherular mode (ϖ⃗= x̂αs + ŷαø + ẑαw ).

z

x

y

r⃗

r⃗0

ν
ψ

φ

ν= (φ×ψ)

φ×φ , φ= (φ×ν)

ν×ν , ψ= ν×φ, r⃗ = r⃗0 +
∫
νdt

Figure 1: Here a travelling plane wave, with phase velocity c , is juxtaposed to a
soliton described by the below solution of M, both satisfying the Maxwell equations
in vacuum. It is a gyration (spinning vortex) propagating with velocity ∥ν∥ = c along
a spherular path defined by r⃗ .

 νφ
ψ

=
 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

x̂ŷ
ẑ

 where
cs := cosωst
sø := sinωøt

etc.

(9)
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ϖ⃗=x̂αs︷ ︸︸ ︷1 0 0
0 cs ss
0 −ss cs


ϖ⃗=x̂αs+ŷαø︷ ︸︸ ︷ cø 0 −sø

ss sø cs sscø
cs sø −ss cscø


ϖ⃗=x̂αs+ŷαø+ẑαw︷ ︸︸ ︷ cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw
ss sø + cscøsw −sscø + cs søsw cscw



D E F I N I T I O N 1.4: Spherular Motion. A spherular rotation is defined as a trigono-

metric three-dimensional motion generated by triaxial angles (αs ,αø,αw ), enclosing

a sphere symmetrically without reaching its poles. The term captures a structure

that is neither strictly spherical nor spheroidal, but maintains equatorial and axial

symmetry across all three axes of rotation.

This triaxial formulation restricts the degrees of rotational freedom in a way that

is both geometrically structured and algebraically closed. As we extend beyond con-

ventional three-dimensional rotations, this constraint provides a stable foundation

upon which higher-order structures may be defined.

In the next section, we introduce the algebraic generalisation of these triaxial an-

gles, transitioning from classical SO(3) to the broader symmetry space of R(3)SO(3),

where multiple triaxial frames interact within a unified topological algebra.

1.3 Expanding to R(3)SO(3)

Classical rotations in SO(3) describe spatial transformations adequately at macro-

scopic scales. However, they fall short in accounting for the structured, multi-

layered rotational behaviour and symmetries observed in quantum systems, such

as spin–orbit coupling. To address these limitations, we explore a natural extension

into a structured higher-dimensional space.

During the development of this framework, it became evident that the pseudo-

dimension introduced by the complex operator validates the field equation system

M. However, to fully accommodate quantum properties—such as the three-family

structure of fundamental particles or the photon’s orbital angular momentum, among

others—a higher-dimensional space is required. This necessitates an expansion of

the framework to R9, leading to the construction of R(3)SO(3), an extended SO(3)
group characterised by ternary rotations in higher dimensions.

The guiding structural insight of this framework is that physical spaces should

be treated as structured mathematical entities which preserve rotational symmetry

while incorporating additional degrees of freedom. Conventional three-dimensional

spaces, defined by SO(3) rotations, describe ordinary spatial transformations, but

they are insufficient for capturing the subtleties of quantum structure.

1.3.1 Nine Dimensions and Three 3D-Spaces: Yellow, Cyan and Magenta

To address the limitations inherent in SO(3), a hierarchical nine-dimensional spatial

structure is introduced by “joining” three spaces—yellow, cyan, and magenta—each

governed by SO(3) symmetries:

{Y , C , M } = {S ∈R3×3 | SST = I ,det(S) = 1, and S ∈ T } ⊂ SO(3),

(10)



TOWARDS A QUANTUM UNIFIED FIELD THE ORY A.L. Vrba

[[x̂ ]]

[[ŷ ]]

[[ẑ
]]

[[ẑ ]] = [[x̂ ]]× [[ŷ ]]

radially reduces to: [[x̂ ŷ ẑ ]]

[[ŷ
x ŷ

y ŷ
z ]]

[[ĉx
ĉyĉ

z]]

[[m̂
x
m̂

y
m̂

z]]

[[m̂xm̂ym̂z]]
= [[ŷx ŷy ŷz]]× [[ĉxĉyĉz]]

M = Y ×C
[[ŷ

x ĉ
y m̂

z ]]

[[ĉx
m̂yŷ

z]][[m̂
x
ŷ
y
ĉ
z]]

[[m̂x ŷyĉz]]
= [[ŷxĉym̂z]]× [[ĉxm̂y ŷz]]

▷◁

M = ▷◁

Y × ▷◁

C

Figure 2: Visual representation of radial reduction applied to structured spaces. The top
section illustrates the radial reduction of the space SO(3) ⊂R3 to a single composite axis.
The bottom-left section shows the eigenspaces M = Y ×C with their full set of radially
reduced axes. The bottom-right section shows the potentialspace, in which the axes are
consistently selected from each of the constituent spaces Y , C , and M according to the

cross-product relations M = Y ×C ,
▷◁
M = ▷◁

Y × ▷◁
C , and ẑ = x̂ × ŷ .

where T is the triaxial rotation matrix defined in Definition 1.5. Hence, {Y , C , M } ⊂
SO(3). These three spaces are eigenspaces, each with its own three axes labelled xyz.

We define these eigenspaces notationally as

Y = [[ŷx ŷy ŷz]], C = [[ĉxĉyĉz]], M = [[m̂xm̂ym̂z]],

and orientate the spaces by

M = Y ×C .

This defines a general orientation for {Y , C , M }, but their xyz axes must also be

fixed orientationally within R9. To achieve this, we define three potential spaces

{
▷◁
Y ,

▷◁
C ,

▷◁
M } as

▷◁
Y = [[ŷxĉym̂z]],

▷◁
C = [[ĉxm̂y ŷz]],

▷◁
M = [[m̂x ŷyĉz]],

which are orientated by
▷◁
M = ▷◁

Y × ▷◁
C .

(11)
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Finally, within each space, the xyz axes are orientated according to

ẑ = x̂ × ŷ .

Thus, each of the nine axes in R9 has a fully defined orientation, forming the special

orthogonal gauge group R(3)SO(3).

Each of these component spaces is structured to provide full symmetries for

R(3)SO(3). The mutual orientation is fixed by the cross-product relations

M = Y ×C ,
▷◁
M = ▷◁

Y × ▷◁
C , and ẑ = x̂ × ŷ ,

which embed the yellow, cyan, and magenta eigenspaces, as well as the potential-

spaces, coherently within a superordinate SO(3×3) structure. Under this construc-

tion, all transformations preserve the required rotational invariances, allowing the

orthogonal gauge group R(3)SO(3) to be consistently defined and fully realising the

rotational symmetries of the group R(3)SO(3).

Having established the mutual orientation of the component spaces, we now

introduce the notation for radial reduction. The radial reduction framework is devel-

oped to describe how the nine-dimensional structure is encoded through reduced

axes, as depicted in Figure 2. Each radially reduced axis is represented by a unit

spatial vector, for example,

m̂= ŷ× ĉ,

where ŷ and ĉ denote the reduced yellow and cyan axes, respectively. The space

spanned by these vectors belongs to R3.

Scaling is introduced by associating a magnitude a to a reduced axis, resulting in

am̂= m̂
√

a2
mx +a2

my +a2
mz ,

where am̂ is interpreted as a vector of magnitude a, oriented within the magenta

eigenspace M .

D E F I N I T I O N 1.5: Angle Vector Defines Triaxial Rotation Matrix. The hyper-angle vec-

tor encodes rotational hyper-displacements:

w⃗= ŷλs + ĉλø + m̂λw .

The corresponding hyper-triaxial rotation matrix T is defined as:

T= I (w⃗),

where I is the identity matrix, and I (w⃗) represents the rotation matrix obtained by

sequentially rotating I by λw about the initial m axis, then by λø about the initial

y axis, and finally by λs about the initial m axis.

D E F I N I T I O N 1.6: The Special Orthogonal Group SO(3×3).

W:= {M = Y ×C } ={
S∈ (R3)3×3 |SST = I , det

(
S
)= 1, and S∈T}⊂ SO(3×3)

Therefore, W⊂ SO(3×3).

(12)
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This construction maps the hyper-space W:= {M = Y ×C } to the group SO(3×3).

However, to describe oriented rotations from within Y toward C , the more refined

group R(3)SO(3) is required.

In this context, SO(3×3) ensures rotational integrity for the hyper-space defined

by the three axes {ŷ, ĉ, m̂}, each of which represents a radially reduced SO(3) space.

The group SO(3×3) introduces two additional degrees of rotational freedom to each

of the spaces {Y ,C , M }, while preserving their three-dimensional character. These

additional degrees of rotational freedom are encapsulated by the group R(3)SO(3).

Having established the extended rotational framework of R(3)SO(3), we now

return to the field equation system introduced earlier, and re-anchor our attention to

the structured field dynamics that arise within the three-dimensional spaces defined

by this framework.

The matrix Iαs ,αø,αw provides all rotation matrices S of interest, with each S
residing in one of the spaces

{Y , C , M }.

Each such matrix S yields a solution to the field equation system

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
,

where the unit velocity vector ν is given by S1, the first row of S; the magnetic

field vector φ by S2; and the electric field vector ψ either by S3, or equivalently, by

computing ψ= ν×φ.

The orientation of the three colour spaces is defined by the relation M = Y ×C .

One of these spaces represents our physical reality; we choose Y as that space—the

space in which you and I interact. The spaces C and M are orthogonal to Y and, in

this framework, may be interpreted mathematically as “imaginary” dimensions.

To describe rotations into these imaginary spaces in a consistent and struc-

tured manner, we now introduce a ternary number system that preserves the three-

dimensional character of each space Y , C , and M .

D E F I N I T I O N 1.7: Ternary Operators and Ternary Numbers. The cyclic cross-product

relations

ŷ= ĉ× m̂, ĉ= m̂× ŷ, m̂= ŷ× ĉ (1)

◦ define the orientation of the spaces Y , C , and M ,

◦ introduce the ternary operators {y, c, m},

◦ and establish the following ternary-complex equivalences:

y :=−c2 = cm=−mc=−y−1,

c :=−m2 =my=−ym=−c−1,

m :=−y2 = yc=−cy=−m−1.

A ternary number r is defined as a sequence of rotations:

r = ye(cα+mβ) := yecαemβ

= yecα cosβ+m
∥∥yecα

∥∥sinβ

(13)
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= (ycosα+csinα)cosβ+msinβ

= ycosαcosβ+csinαcosβ+msinβ

and always respects the right-hand rule, as defined by (1), yielding any of the follow-

ing cyclically equivalent forms:

ry = ye(cα+mβ) (2)

rc= ce(mα+yβ)

rm=me(yα+cβ) (3)

These expressions define ternary numbers in the near-field T⊂R3, governed by

non-distributive multiplication and a cyclic imaginary structure. The ordering of the

rotations in (2)–(3) adheres to the right-hand rule implicit in the ternary algebra.

D E F I N I T I O N 1.8: Unit Vectors on R(3)SO(3). In this work, we repurpose Euler’s clas-

sical notation for rotations on the complex number plane to express a structurally

meaningful representation of vector orientations within the R(3)SO(3) framework.

The expression

a⃗ = ê(yα+zβ)
x

denotes a unit vector initially aligned with the basis direction x (i.e., a⃗′′ = x̂ ), and

successively rotated: first by an angle α about the z-axis, yielding a⃗′ = x̂ cosα+
ŷ sinα; and then by an angle β from the xy-plane toward the z-axis, resulting in

a⃗ = x̂ cosαcosβ+ ŷ sinαcosβ+ ẑ sinβ.

This construct mirrors the geometric philosophy underlying the construction of

R(3)SO(3).

This representation introduces a novel operation in vector algebra—a rotation-

product, denoted by ⊙—defined by additive composition of angular arguments:

ê(y(α1+α2)+z(β1+β2))
x := ê(yα1+zβ1)

x ⊙ ê(yα2+zβ2)
x .

This directional composition, which preserves both orientation and structural form,

serves as a natural algebraic extension complementing the dot and cross products in

the R(3)SO(3) framework.

N O T A T I O N (Vectors in R(3)SO(3)). In SO(3), let the vector a⃗ = ax x̂+ay ŷ+az ẑ . To

represent this vector within one of the spaces {Y , C , M }, we use the spatial–imaginary

operator to explicitly place

a⃗ = ê(yα+zβ)
x

into a given space:

ya⃗ = ax ŷx+ay ŷy+az ŷz = yê(yα+zβ)
x

ca⃗ = ax ĉx+ay ĉy+az ĉz = cê(yα+zβ)
x

ma⃗ = axm̂x+ay m̂y+azm̂z =mê(yα+zβ)
x

(14)
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With vectors now explicitly situated in their respective spaces via the spatial–imaginary

operators, we next define how these objects interact through a structured algebraic

operation: the ternary cross product. This operation preserves magnitude, respects

orientation, and aligns with the geometric foundations established by the right-hand

rule on {ŷ, ĉ, m̂}.

D E F I N I T I O N 1.9: Ternary Cross Product. Let

â = ê(yαa+zβa )
x and b̂ = ê

(yαb+zβb )
x

be two unit vectors in R3. Placing them explicitly into the ternary spaces Y and C ,

respectively, gives

yâ = yê(yαa+zβa )
x and cb̂ = cê

(yαb+zβb )
x .

Then the ternary cross product, preserving vector length, is defined by

yâ ×cb̂ := (ŷ× ĉ)ê
(y(αa+αb )+z(βa+βb ))
x ,

where ŷ× ĉ= m̂ and, since the standard inner product in R9 yields

cosθ = (yâ) · (cb̂) = 0,

the vectors yâ and cb̂ are orthogonal.

For the special case where the two vectors reside in the same space, e. g.,

yâ = yê(yαa+zβa )
x and yb̂ = yê

(yαb+zβb )
x ,

the ternary cross product is defined by

yâ ×yb̂ := (ŷ× ŷ)ê
(y(αa+αb )+z(βa+βb ))
x eyθ,

where:

◦ ŷ× ŷ=−m̂ determines the space of the result,

◦ ê
(y(αa+αb )+z(βa+βb ))
x defines the combined rotational phasing within M ,

◦ eyθ introduces a complexification, with cosθ = â · b̂ calculated using the standard

inner product in R3.

The result thus contains:

◦ a real component proportional to −m̂cosθ,

◦ a ternary-imaginary component proportional to −m̂ysinθ,

The cross product between vectors situated in different R(3)SO(3) subspaces

preserves both geometric structure and rotational integrity. However, as ternary

numbers constructed from different cyclic bases belong to algebraically distinct sub-

spaces, direct multiplication between them is not defined within the non-distributive

ternary number field.

To reconcile this, we now establish a structural bridge between the ternary alge-

bra and the corresponding vector geometry—an operation that allows cross-subspace

interactions via a consistent and geometrically grounded product.

(15)
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D E F I N I T I O N 1.10: Ternary Number–Vector Duality via Cross Product. Ternary num-

bers constructed from different cyclic bases—such as

ry = ye(cα+mβ),

rc= ce(mα+yβ),

—belong to distinct multiplicative subspaces defined by their respective axis oper-

ators y and c. Because the ternary number field lacks distributivity and does not

support direct cross-cyclic multiplication, the expression ry · rc is undefined in the

algebraic sense.

To resolve this, we define a duality between ternary numbers and ternary vectors:

the cross-basis product of two ternary numbers is defined using the ternary vector

cross product. This product is denoted by the symbol ⊗, and is evaluated via:

ry⊗ rc
def
:= r⃗y × r⃗c ,

where

r⃗y := yê(cα+mβ) and r⃗c := cê(mα+yβ)

are the corresponding vector realisations of ry and rc.

This cross-basis product satisfies:

◦ norm preservation:
∥∥ry⊗ rc

∥∥= ∥∥ry
∥∥∥∥rc

∥∥,

◦ directional closure: alignment with the ternary cyclic ordering y×c=m,

◦ geometric realisability: the product remains in R3 with well-defined orientation,

◦ algebraic compatibility: it extends the ternary number system into a closed geo-

metric structure under cross-cyclic composition.

This establishes a duality between the algebra of ternary numbers and the geom-

etry of ternary vectors, wherein the ternary cross product provides a consistent

mechanism for inter-subspace composition.

Having established the algebraic–geometric duality that underlies inter-subspace

structure, we now turn to the foundational constraint that ensures consistency across

all such representations: the condition of unit cyclicity.

D E F I N I T I O N 1.11: Ternary Unit Cyclicity in R(3)SO(3). The SO(3) condition that

det(S) = 1 ensures that the matrix S represents a rotation that maintains the hand-

edness (orientation) of the coordinate system. In the special orthogonal group

R(3)SO(3), this is generalised: the unit determinant condition is replaced by unit

cyclicity cyc(S) = 1. Cyclicity is defined as:

cycS := ∥S1∥2∥S2∥2

(S1 ·S1)(S2 ·S2)
detS,

where S1 and S2 denote the first and second rows of S, respectively. Here, S1 ·S1 is

the standard (non-Hermitian) inner product, and ∥S1∥2 is the sum of the squares of

all coefficients in S1.

(16)
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The condition of unit cyclicity generalises the determinant constraint of SO(3),

ensuring that all structural and algebraic relations established in the previous sec-

tions are preserved under transformation.

All necessary structural components—vectorial rotation, ternary algebra, unit

cyclicity, and geometric duality—have now been established. These elements con-

verge in the formal construction of a new symmetry group: R(3)SO(3). This group

generalises SO(3) by incorporating ternary structure and extending the field dynam-

ics into a unified algebraic and geometric framework.

1.4 The Special Orthogonal Gauge Group R(3)SO(3)

D E F I N I T I O N 1.12 The group R(3)SO(3) is defined by the hierarchical structure:

{Y , C , M } = {S ∈R3×3 | SST = I ,det(S) = 1, and S ∈ T } ⊂ SO(3),

W:= {M = Y ×C } = {S∈ (R3)3×3 |SST = I ,det
(
S
)= 1, and S∈T} ⊂ SO(3×3),

{Y , C , M } = {S ∈ (R3)3×3 | SST = I ,cyc(S) = 1, and S ∈T} ⊂ T (3)SO(3).

The three spaces {Y , C , M } form a subgroup of SO(3), defined by matrices T
constructed through specific triaxial rotations (see Definition 1.5 (pp. 12)). These

spaces are embedded in a structured nine-dimensional space W, forming a hyper-

SO(3×3) framework. This space is defined by the unit hypervectors {ŷ, ĉ, m̂},

which correspond to the radially reduced spaces {Y , C , M }, respectively.

These unit vectors yield the ternary operators {y, c, m} (see Definition 1.7

(pp. 13)), which define a near-field of ternary numbers T ⊂ R3, notable for lack-

ing distributivity. Just as complex numbers may be viewed as rotations of the real

number line, ternary numbers describe structured rotations across the three spaces

{Y , C , M } ⊂ SO(3), extending these to {Y , C , M } ⊂ T (3)SO(3). This extension de-

fines the extraordinary orthogonal group R(3)SO(3), formally equivalent to SO(3,T).

The group R(3)SO(3) satisfies the following properties:

1. Unit Cyclicity Condition: Any matrix S ∈ R(3)SO(3) satisfies cycS = 1, enabling:

2. Field Equation System: For unit vectors ν,φ,ψ defined as the rows of S, the field

equation system is:

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
. (4)

These equations are valid if and only if cycS = 1, and they define the foundational

field system within R(3)SO(3).

3. Smooth Transformations: All transformations in R(3)SO(3) are continuously dif-

ferentiable and integrable, ensuring analytical robustness.

4. Closure and Group Properties:

a. Closure: S1,S2 ∈ R(3)SO(3) ⇒ S1S2 ∈ R(3)SO(3).

b. Identity: There exists an identity element I ∈ R(3)SO(3) such that SI = I S = S.

c. Inverses: Each S ∈ R(3)SO(3) has an inverse S−1 ∈ R(3)SO(3) with SS−1 =
S−1S = I .

(17)
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d. Associativity: (S1S2)S3 = S1(S2S3) for all S1,S2,S3 ∈ R(3)SO(3).

5. Invariant Symmetries: As an extension of SO(3), R(3)SO(3) preserves all SO(3)

invariants while introducing ternary-structured symmetry transformations.

6. Compactness: R(3)SO(3) is a smooth and differentiable gauge group that pre-

serves unit cyclicity. Its compactness is defined through the finiteness and bound-

edness of the associated field solutions.

7. Gauge Conditions: The field equation system (4) provides natural gauge condi-

tions for R(3)SO(3), extending Maxwell’s equations in vacuum to a generalised

setting. The ternary algebraic structure unifies strong and electric forces within

a Maxwell-like framework, supporting quantised and topologically stable field

interactions.

The gauge group R(3)SO(3) emerges as a structurally complete and algebraically

rich extension of the classical rotation group SO(3). Through its ternary structure,

unit cyclicity condition, and integrated vector–number duality, R(3)SO(3) provides a

coherent framework in which field configurations are geometrically structured and

algebraically constrained.

Within this framework, the field equation system M(ν,φ,ψ) arises not as an

imposed law, but as a natural consequence of the internal symmetries and structural

properties of R(3)SO(3). Later in this work we discover that it defines a zero-order

gauge field description that preserves orientation, supports smooth transformations,

and ensures topological stability across the extended field space.

We now turn to this field equation system, M(ν,φ,ψ), and demonstrate how

Maxwell’s equations in vacuum emerge directly from the R(3)SO(3) structure.

2 M(ν,φ,ψ) are the zero-order Maxwell field equations in vacuum

We now demonstrate that the field equation system M(ν,φ,ψ), derived from the

rotational structure of R(3)SO(3), recovers the Maxwell equations in vacuum as a

natural consequence.

T H E O R E M 2 . 1 : Soliton Equation System.

In a vacuum, let ψ and φ be the electric and magnetic fields, respectively, defined

at a point s⃗ = s⃗0 +
∫
νdt , where ν is the velocity vector. The system of simultaneous

equations:

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
(5)

constitutes the linear form of Maxwell’s equations in vacuum.

P R O O F . Applying the curl operation to the second and third equations in the system

(5) yields:

∇×φ= 1

ν ·ν∇×(
ψ×ν) , ∇×ψ=∇×(

ν×φ). (6)

To evaluate these vector triple products, we apply standard vector calculus identities:

∇×(
ψ×ν)= (ν ·∇)ψ− (ψ ·∇)ν+ψ(∇·ν)−ν(∇·ψ),

(18)
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∇×(
ν×φ)= (φ ·∇)ν− (ν ·∇)φ+ν(∇·φ)−φ(∇·ν).

Evaluating the terms of ∇×(
ν×φ):

1. The term (φ ·∇)ν=φx ∂ν
/
∂x +φy ∂ν

/
∂y +φz ∂ν

/
∂z = 0 since ν is a function

of time only, not of position.

2. To evaluate (ν ·∇)φ, let ν= ν′+δν, where ν′ is time-dependent and δν accounts

for spatial inhomogeneity. For the homogeneous case where δν= 0, we have:

ν′ = x̂
∂x

∂t
+ ŷ

∂y

∂t
+ ẑ

∂z

∂t
⇒ (ν′ ·∇) = ∂

∂t
.

Hence,

(ν ·∇)φ= ∂φ

∂t
.

3. The term ν(∇·φ) = 0, since φ is not a function of position.

4. Similarly, φ(∇·ν) = 0. Even if multiplied by a constant k, we obtain:

φ (∇·ν)k =φ∂k

∂t
= 0.

Substituting these into equation (6), we find:

∇×φ= 1

u2

∂ψ

∂t
, ∇×ψ=−∂φ

∂t
,

where u2 = ν ·ν is the squared magnitude of the propagation velocity. These are

recognised as the curl forms of Maxwell’s equations in vacuum. Including the diver-

gence conditions:
∇×φ= 1

u2

∂ψ

∂t
, ∇×ψ=−∂φ

∂t
,

∇·φ= 0, ∇·ψ= 0,

(7)

we recover the complete Maxwell system for free space.
□

Later, in Theorem 4.1 (pp. 22), we will demonstrate axiomatically that u2 = 1/ϵ0µ0,

confirming that the simultaneous equation set

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
is hierarchically superordinate to the Maxwell equations. This hierarchical structure

implies that solutions to M not only satisfy classical electromagnetic theory, but

also fulfil the d’Alembert wave equations for electric and magnetic fields.

The equations within the system M may be interpreted as follows:

1. ν= φ×ψ/φ ·φ : defines the direction of energy flow (Poynting vector) and char-

acterises wave action.

2. φ= ψ×ν/ν ·ν : is consistent with the form of Maxwell’s displacement current.

3. ψ= ν×φ : encodes Faraday’s law of electromagnetic induction.

(19)
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3 Gyrations as Maxwellian Vortices

In a quantised context, “gyration” denotes a spinning quantum point of finite extent

that generates a gyrating field. Unlike a lighthouse beam, this field exhibits gyration

at every point in space. Consider a gridded disc, with orthogonal lines representing

the electric and magnetic fields. An observer viewing a fixed window on this gyrating

disc perceives a field rotating about the window’s centre.

Theorems 2.1 (pp. 18) and 4.1 (pp. 22) establish the field equation system as

an alternative form of Maxwell’s equations. Introducing a gyration reference frame

(expressed in radians) overlaid onto the laboratory frame (expressed in metres) yields

the gyratory Maxwell equations. Consequently, a gyration propagates indefinitely as

a wave, analogous to a photon.

N O T A T I O N (Overset Circle for Angular Quantities). To distinguish between spatial

and angular quantities, we adopt an overset circle (e.g., ◦x) to denote variables ex-

pressed in radians rather than metres, without altering the identity or directional

interpretation of the symbol. For example:

• x, y, z ∈R denote spatial positions in the laboratory frame (measured in metres),

• ◦x, ◦y, ◦z ∈ R denote angular positions in the internal gyration frame (measured in

radians).

This notational convention allows us to define, for example, the gyro-velocity ω,

which is the gyration rate of a vortex, and the gyro-gradient
◦∇, analogously to their

spatial counterparts ν and ∇, while preserving the geometric roles of the symbols:

ν= x̂
dx

dt
+ ŷ

dy

dt
+ ẑ

dz

dt
, ω= x̂

d ◦x
dt

+ ŷ
d ◦y
dt

+ ẑ
d ◦z
dt

,

∇= x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
,

◦∇= x̂
∂

∂
◦x
+ ŷ

∂

∂
◦y
+ ẑ

∂

∂
◦z

.

This change of units from metres to radians reflects the transition from trans-

lational motion to internal vortex structure—central to the formulation of gyrating

solitons in the R(3)SO(3) framework.

D E F I N I T I O N 3.1: Gyro-Field Equation System. The Gyro-Field Equation System in

the R(3)SO(3) framework describes the internal dynamics of a gyrating electromag-

netic soliton in a quantised context. It is defined as:

◦M(ω,φ, ◦
ψ) :=

ß
ω= φ× ◦

ψ

φ ·φ , φ=
◦
ψ×ω
ω ·ω , ◦

ψ=ω×φ
™

,

where:

• ω is the gyro-velocity vector, defined in the internal (gyration) frame,

• φ is the magnetic field vector,

• ◦
ψ is the electric field vector arising from gyration.

(20)
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The gyro-frame is expressed in radians rather than metres, and derivatives are

taken with respect to angular coordinates. Analogous to the laboratory-frame velocity

ν and gradient ∇, the gyro-velocity and gyro-gradient are defined as:

ν= x̂
dx

dt
+ ŷ

dy

dt
+ ẑ

dz

dt
, ω= x̂

d ◦x
dt

+ ŷ
d ◦y
dt

+ ẑ
d ◦z
dt

,

∇= x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
,

◦∇= x̂
∂

∂
◦x
+ ŷ

∂

∂
◦y
+ ẑ

∂

∂
◦z

.

The system
◦M is structurally analogous to the field equation system M and

gives rise to the gyro-Maxwell equations, which extend classical Maxwell theory to

describe the rotational dynamics of internal fields. Together, M and
◦M provide

a unified framework for electromagnetic solitons exhibiting both translational and

internal vortex structures.

N O T E . Since M theorematically (by Theorems 2.1 (pp. 18) and 4.1 (pp. 22)) yields

Maxwell’s equations in vacuum,
◦M necessarily implies the gyro-Maxwell field equa-

tions, opening a novel domain in electromagnetic field theory. These gyro-field

equations provide a theoretical basis for the Planck–Einstein relation E = h f , thereby

validating the formulation of
◦M.

4 Constructing a Generalised and Quantised Field Theory

Theorem 2.1 (pp. 18), derived from M, generalises Maxwell’s equations in vacuum

with a general velocity vector ν. To avoid the hypothesis that ∥ν∥ = c , we adopt the

following five elementary quantities as axioms:

A X I O M 4 . 1 : Electromagnetic Action and Coupling Constants.

We adopt the following physical definitions as foundational:

1. Action is defined as momentum times distance. By mechanical analogy, electro-

magnetic momentum (EM-momentum) is charge times velocity:

p := ec
[

Cms−1] .

2. Electromagnetic action (EM-action) is the product of EM-momentum and propa-

gation distance. Let lo = ct0 be the elementary propagation length, then:

h := eclo
[

Cm2/s
]

.

3. Relating EM-action to mechanical action yields:

h = ϱκh, with ϱ := 1kgC−1,

where κ is a dimensionless coupling factor that connects electromagnetic and

inertial formulations of action.

We therefore adopt the following eight elementary quantities as axiomatic con-

stants in the unified field framework, even though κ remains an undetermined

coupling constant to be evaluated within the theory.

h Planck’s constant, or elementary action (joule second).

(21)
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e Elementary charge (coulomb).

c Speed of light in vacuum (metres per second).

ω̇0 Radial angular velocity, ω̇0 = 2π (radians per second).∣∣µ0
∣∣ Numeric value for magnetic permeability 4π×10−7, (Alternatively, we can use

the fine structure constant alpha)

h Electromagnetic action h= eclo (coulomb metre squared per second).

ϱ Charge-to-mass ratio, here set to unity ϱ= 1kgC−1.

κ Dimensionless coupling constant relating electromagnetic and Newtonian ac-

tion.

The aim of Theorem 4.1 (pp. 22) is to employ the field equations systems M
and

◦M to quantise Maxwell’s equations in vacuum, embedding them fully within

the structured geometry of R(3)SO(3). This theorem accomplishes the following

objectives:

1. Establish the magnetic quantum flux φ.

2. Derive the vacuum light-speed identity c2 = (ϵ0µ0)−1.

3. Derive the dimensionless coupling constant κ, thereby completing the relation

h = ϱκh.

4. Define an elementary length scale lo , fully quantising the electromagnetic field

framework.

5. Provide a rigorous derivation of the Planck–Einstein relation E = h f within the

field structure.

To simplify notation, fields and potentials are represented as functions of quan-

tised flux; for instance, the magnetic field F (φ) and magnetic potential V
(
φ
)

, where

each underset dot symbolically encodes spatial division— respectively by l 2
o and lo .

T H E O R E M 4 . 1 : General Field Quantisation Theorem.

The electromagnetic phenomenon is fully quantifiable by adopting the following

assertions:

1. There exist an elementary length, lo , and an elementary time, to , that are related

to the speed of light in vacuum, c , by lo = cto .

2. and an elementary angle, ϑo = ω̇0to rad.

3. There exists an elementary magnetic field quantum,
••
φ, and electric field quanta,

••
ψ and

◦
••
ψ, that mutually reinforce each other by self induction manifesting in an

elementary electromagnetic soliton, described by:

M(ν,
••
φ,

••
ψ) :=

®
ν= ••

φ×
••
ψ

••
φ ·

••
φ

,
••
φ= ••

ψ×ν
ν ·ν ,

••
ψ= ν×

••
φ

´
(8)

in union with

◦M(ω,
••
φ,

◦
••
ψ) :=

®
ω= ••

φ× ◦
••
ψ

••
φ ·

••
φ

,
••
φ=

◦
••
ψ×ω
ω ·ω ,

◦
••
ψ=ω×

••
φ

´
(9)

4. The elementary soliton described by the solution M∪ ◦M carries an elementary

charge e (also refer to discussion on page 27.)

(22)
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5. An elementary soliton M has action, S = h while propagating at light speed,

6. and
◦M provides additional gyro-action,

◦
S§= n−h, while gyrating with a gyration

velocity ω= nω̇0 radian per second (Plank’s energy-frequency relation),

7. and occupies a volume l 3
o in space.

8. The magnetic field quantum
••
φ in the elementary soliton M∪ ◦M also manifests

itself in an elementary electromagnetic action S and
◦
S§.

P R O O F . We begin by repeating the first equations of (8) and (9) to obtain

ν= ••
φ×

••
ψ

••
φ ·

••
φ

and ω= ••
φ× ◦

••
ψ

••
φ ·

••
φ

(10)

On the premise that
••
φ×

••
ψ is indicative of the wave action, we multiply (10) by the

quantised action h and −h, respectively (Planck constant). Evaluating the norms and

using ∥ν∥ = c and ∥ω∥ = nω̇0, gives :

hc = h

∥
••
φ∥2 ∥ ••

φ∥∥
••
ψ∥ and −hnω̇0 =

−h
∥

••
φ∥2 ∥ ••

φ∥∥ ◦
••
ψ∥

Here it is important to note that the Planck constant

◦ h has units kgm2 s−1, and

◦ −h has units kgrad2 s−1

The magnetic flux ∥φ∥ is related to magnetic flux density ∥
••
φ∥ by ∥φ∥ = l 2

o∥ ••
φ∥. Simi-

larly, the electric fluxes ∥ψ∥ and ∥ ◦
ψ∥ are related to the electric fields ∥

••
ψ∥ and ∥ ◦

••
ψ∥

by ∥ψ∥ = l 2
o∥ ••
ψ∥ and ∥ ◦

ψ∥ = l 2
o∥ ◦

••
ψ∥, respectively. Expressing the preceding equations

in terms of fluxes, after dividing by c and ω̇0, respectively, yields:

h =
ï

h

∥φ∥2c

ò
∥φ∥∥ψ∥ and n−h =

ï −h
∥φ∥2ω̇0

ò
∥φ∥∥ ◦

ψ∥ (11)

Here the square brackets indicate the development of a physical constant, which we

want to determine by eliminating ∥φ∥.

Assertion 4 of Theorem 4.1 (pp. 22) establishes that an electromagnetic wave

transports a quantised charge e at the velocity c . From Axiom 4.1 (pp. 21), this

implies that the mechanical wave action h relates to the electromagnetic action h via

h = ϱκh, where ϱ= 1 kgC−1

with κ remaining a dimensionless coupling constant to be determined. (This satisfies

Theorem 4.1 (pp. 22) Assertion-5.)

Similarly, gyro-electromagnetic angular momentum is LEM = ◦
Ieω̇0, where IEM =◦

Ie is gyro-EM-moment of inertia, and
◦
I is an inertial-scaling constant (m2 rad−2).

Angular EM-momentum times angle ϑo yields gyro-EM-action. Elementary actions

S and
◦
S§, with units kgm2 s−1 and kgrad2 s−1, respectively, are now expressible.

S = h = ϱκeclo and
◦
S§= −h = ϱκ ◦

Ieω̇0ϑo (12)

Let us think about the magnetic flux ∥φ∥ in the context of the elementary EM-

wave and Assertion-8 of Theorem 4.1 (pp. 22): The magnetic flux ∥φ∥ of the EM-wave

results from the transportation of an elementary charge e. Because the charge is

(23)
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carried by the elementary EM-wave we can postulate that by choosing the units and

dimensioning of χ that χ∥φ∥ = ec i. e. electric momentum, and multiplying by lo

we obtain wave action. Similarly, the gyro EM-action is ◦
χ∥φ∥ = ◦

Ieω̇0 times angle

subtended, ϑo , gives:

S = h = ϱχ∥φ∥lo and
◦
S§= −h = ϱ ◦

χ∥φ∥ϑo

and where χ and ◦
χ are constants with units and scaling to be determined. Combining

the above with (12) gives

∥φ∥ = κec

χ
and ∥φ∥ = κ

◦
Ieω̇0
◦
χ

and we substitute ∥φ∥ from the above into (11) to get

h =
ï

h

∥φ∥2c

òÅ
κec

χ
∥ψ∥
ã

and n−h =
ï −h
∥φ∥2ω̇0

òÇ
κ

◦
Ieω̇0
◦
χ

∥ ◦
ψ∥
å

.

To eliminate ∥ψ∥ and ∥ ◦
ψ∥, we substitute ∥ψ∥ = c∥φ∥ and ∥ ◦

ψ∥ = nω̇0∥φ∥, obtained

from the third equations of (8) and (9), respectively, which yields:

h =
ï

h

∥φ∥2c

òï
1

χ

ò
κe c2∥φ∥ and n−h =

ï −h
∥φ∥2ω̇0

òñ ◦
I
◦
χ

ô
κenω̇2

0∥φ∥

We can now express the magnetic flux ∥φ∥ as

∥φ∥ = h

κe
and ∥φ∥ = h

κe
(13)

contingent onï
h

∥φ∥2c

òï
1

χ

ò
c2 = 1 and

ï −h
∥φ∥2ω̇0

òñ ◦
I
◦
χ

ô
nω̇2

0 =
n

2π

and replacing ∥φ∥ using (13) givesï
κ2e2

hc

òï
1

χ

ò
c2 = 1 and

ï
κ2e2

2πhω̇0

òñ
2π

◦
I
◦
χ

ô
ω̇2

0 = 1

which requires
1

χ
= h

κ2e2c
and

◦
I
◦
χ
= h

κ2e2ω̇0
, henceï

κ2e2

hc

òï
h

κ2e2c

ò
c2 = 1 and

ï
κ2e2

2πhω̇0

òï
2πh

κ2e2ω̇0

ò
ω̇2

0 = 1 (14)

which provides us with the permitivity and permeability

ϵo = κ2e2

hc
and ◦

ϵo = κ2e2

2πhω̇0

µo = h

κ2e2c
and ◦

µo = 2πh

κ2e2ω̇0

(24)
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Assertions-5 and 6 are confirmed by: (recalling ∥ψ∥ = c∥φ∥, ∥ ◦
ψ∥ = nω̇0∥φ∥, and

∥φ∥ = h/κe)

ϵo∥φ∥∥ψ∥ = ϵoc∥φ∥2 = h and ◦
ϵo∥φ∥∥ ◦

ψ∥ = ◦
ϵonω̇0∥φ∥2 = n−h (15)

Now—with a bit of hindsight—all that remains, and depending on CODATA defini-

tions, is to set

κ2 = h∣∣µ0
∣∣e2c

or κ2 = 1

2α

where
∣∣µ0

∣∣= 4π×10−7 without units and also using the numeric values of h, e and

c . Alternatively κ is derived over the fine structure constant α. Equation (14) now

gives the sought after result

ϵ0 = e2

2αhc
and µ0 = 2αh

e2c

This concludes the proof that the field equation sets, repeated here:

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
and

◦M(ω,φ, ◦
ψ) :=

ß
ω= φ× ◦

ψ

φ ·φ , φ=
◦
ψ×ω
ω ·ω , ◦

ψ=ω×φ
™

are the quantised Maxwell field equations in vacuum, hierarchically superordinate

to the non-quantised Maxwell field equations. This is because we can now replace
1/u2 in (7) with ϵ0µ0, having derived it independently rather than postulating it

from experience.

4.1 Quantising Space

Importantly, the definition of the field equation sets M and
◦M, as defined here in

terms of fluxes, is valid only for a quantised space element l 3
o . Beyond this, potentials

and fields are derived see Section 5.2 (pp. 31).

The relations κ2 = 1/(2α) and h = ϱκeclo , where ϱ= 1 kgC−1, provide the key

to determining the elementary length and time. Furthermore, the elementary angle

ϑo = ω̇0to allows us to solve for
◦
I using equation (12).

lo = h

ϱκec
and

◦
I = c2

2πω̇2
0

= c2

4π2

Using the 2018 CODATA we get:

κ= 8.27755999929(62)

lo = 1.66656629911(12)×10−24 metres

to = 5.55906679649(42)×10−33 seconds using l = ct .

From a symmetry point of view the above results beckon to hypothesise a gyra-

tion rate ϖ= 2π/to that cannot be exceeded (one revolution per linear elementary

distance travelled)

ϖ= 1.130 259 005 19(08)×1033 radian per second
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4.2 The Electromagnetic- and Yang–Mills Mass Gap

The preceding theorem enables the determination of the electromagnetic mass gap,

denoted ∆0, to CODATA-level precision. This mass gap represents the minimum

energy required for vacuum excitation.

Equations (15) demonstrate that a photon possesses an electromagnetic mass

gap. Consider the interaction of a single elementary EM-soliton, M(ν,φ,ψ) ∪
◦M(ω,φ,

◦
ψ), integrated over one second. Equation (12) defines elementary action as

electromagnetic momentum times distance lo . Consequently, we define the ratio

ro = to/tH, where tH = 1 second. The energy qE of an elementary EM-soliton is then

expressed as:

E = hr0

tH

+h f

When f = 0 the lowest energy state corresponds to

∆EM = hr0

tH

= 3.68347665621(28)×10−66 joule.

Given that ∆EM is an energy quantum then we can calculate the radial velocity

quantum

ωq = 3.49286468173(26)×10−32 radian per second

Extending the electromagnetic mass gap concept to the full framework devel-

oped in this work—including its generalised field structures and rotational invari-

ants—provides a natural explanation for the existence of a positive Yang–Mills mass

gap. Within the R(3)SO(3) formalism, this lowest-energy excitation does not arise

from spontaneous symmetry breaking or confinement assumptions, but emerges

necessarily from the intrinsic quantised geometry and solitonic topologies of the

field system.

4.3 Magnetic flux quantum disparity

The astute reader would have noticed that the standard definition for the funda-

mental magnetic flux quantum is: Φ0 = h/2e, which differs from the elementary

magnetic flux quantum defined in this work as ∥φ∥ = h/κe, which is demonstrably

smaller than the established value. This is not a contradiction; it is a context-related

difference:

Φ0 = h/2e—Superconductor context

◦ Originates from the Bardeen-Cooper-Schrieffer theory of superconductivity, where

charge carriers are Cooper pairs with charge 2e.

◦ The quantisation reflects a collective quantum state of many particles (Cooper

pairs) within a macroscopic wavefunction constrained by boundary conditions

(such as in a superconducting ring).

◦ The factor 2e emerges due to the pairing mechanism, making this quantisation

inherently linked to the condensed matter environment and the properties of

Cooper pairs.
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φ= h/eκ—Vacuum context

◦ The R(3)SO(3) framework and the soliton equation system M enabled a vacuum-

based quantisation rooted in fundamental constants: h,e,c,α.

◦ The dimensionless coupling factor κ= 1/
p

2α couples electric action to mechani-

cal action over a unit conversion constant (1kgC−1) and relates to the topology of

the quantised vacuum element l 3
o .

◦ The relation of κ= 1/
p

2α intriguingly ties the vacuum quantisation to the fine

structure constant, suggesting deeper connections to electromagnetic interactions

in vacuum rather than a condensed matter environment.

◦ This quantisation implies a fundamental unit of magnetic flux in the vacuum, not

dependent on particle pairing mechanisms but rather on the discrete structure of

the vacuum and field interactions at a fundamental level.

4.4 Discussion

Elementary charge carried by EM-soliton

Theorem 4.1 (pp. 22) Assertion-4 asserts that an elementary soliton described by

M∪ ◦M carries an elementary charge e. Let’s consider an electron (e) positron

(p) annihilation producing two gamma-rays. The convention has it that charge is

annihilated, but Theorem 4.1 (pp. 22) Assertion-4 now preserves the charge in the

gamma-rays, therefore in the framework that is developed here, we have:

e+p ←→ γp +γe

preserving charge, momentum and energy.

What Defines the Speed of Light?

Traditionally, the speed of light in vacuum, denoted by c , is defined as

c = 1p
ϵ0µ0

,

where ϵ0 is the vacuum permittivity and µ0 the vacuum permeability. However, in

the derivation of Theorem 4.1 (pp. 22), these constants themselves are shown to

emerge from the quantised structure of space, conditioned on the prior assertion

that the speed of light is fixed by the relation

lo = c t0,

where lo and t0 are elementary quanta of length and time, respectively.

This leads to a circular reasoning: c is defined via ϵ0 and µ0, but these constants

are themselves derived from the assumption of a fixed c . To resolve this foundational

issue, we introduce the following proposition:

P R O P O S I T I O N 4.1: Transportivity as a Fundamental Property of Space. We postulate

the existence of a primitive, irreducible property of space called transportivity, de-

noted T , defined in vacuum by

T := c2.

Transportivity encodes the maximal causal velocity permitted by the structure of

space, independent of any specific field equations. It is not derived from electromag-
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netic properties such as ϵ0 or µ0, but rather serves as a generative principle from

which such constants may emerge.

This reformulation allows us to avoid circular definitions and treat c as an emergent

quantity rooted in the more fundamental transportivity T . The deeper physical

origins of T are not yet fully understood; however, the role it plays in defining

inertial response, field propagation, and causal structure will become evident in the

derivation of gravitational and Coulomb fields in the concluding sections of this

work.

P A R T I I

Towards a Unified Field Theory

In Part I, we established the R(3)SO(3) mathematical framework, from which

the quantised Maxwell field equations in vacuum naturally emerge. This foundation

revealed how the internal structure of space, encoded in cross-product cyclicity and

rotational symmetry, gives rise to coherent field dynamics.

In Part II, we extend this framework to structured fields, aiming to describe

quantised topological electromagnetic solitons embedded within a truly nilpotent

Universe. This involves the aggregation of solitons, the emergence of inertial and

energising fields, and the formulation of interaction principles governed by internal

field geometry and curvature.

5 Aggregation, Fields and Interactions

Consider the solution of the field equation system

◦M(ω,φ, ◦
ψ) :=

ß
ω= φ× ◦

ψ

φ ·φ , φ=
◦
ψ×ω
ω ·ω , ◦

ψ=ω×φ
™

,

describing a quantised electromagnetic soliton:

◦
Υ

dsc−−→by

ωφ
◦
ψ

 =
 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

x̂ŷ
ẑ

 ,

which represents a stationary three-dimensional gyration of a space quantum l 3
o . Its

energy is given by

EΥ = −h
√
ωs

2 +ωo
2 +ωw

2.

In this section, we investigate the aggregation (fusion) of such solitons, define their

field structure, and describe their interactions.

We define four quantum numbers:

m m ∈N is a quantum length multiplier, scaling the space quantum to (mlo)3.

f f ≤m2 is a fill or occupancy number, it denotes the number of magnetic

flux quanta in the area (mlo)2.

v v= m2/f ≥ 1, the vacancy ratio of the scaled space quantum.
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r r ∈Z, representing the radial distance from the soliton’s centre, r = r lo/2, in

integer steps of lo/2.

Aggregating (fusing) two solitons, Υ′ = 2Υ, requires an enlarged space quan-

tum of volume (2lo)3, which could accommodate four Υ solitons, since the cross-

sectional area (2lo)2 quadruples. However, populating this space with only f = 2
solitons yields an energy of

E ′
Υ = −hf

√
ωs

2 +ωo
2 +ωw

2,

and a vacancy ratio of v= 2.

5.1 Understanding Gyrations and Aggregated Gyrations

The aggregated soliton

◦
Υ(m) dsc−−→by

ωφ
◦
ψ

 =
 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

x̂ŷ
ẑ

 .

◦ If m= 1,
◦
Υ represents a stationary, three-dimensional gyration of a space quantum

(lo)3. As defined in Section ?? (pp. ??), this soliton exhibits three distinct types

of rotational motion: spin gyration (ωs) about the x axis, orbital gyration (ωo)

around the initial y axis, and nutational gyration (ωw ) about the initial z axis.

These combined gyrations define the internal topological structure of the soliton;

there is no physical translational motion.

This motion may be visualised by analogy to a pocket watch: the motion of the

second hand represents the spin angular momentum. Flipping the watch about

the 9–3 o’clock axis reorients the crown (at the 12 o’clock position) into an orbital

motion, corresponding to orbital angular momentum. A further rotation about

the 12–6 o’clock axis introduces additional nutational angular momentum into the

system (see Figure 3 (pp. 30)). Alternatively, this structure can be conceived as a

spherical object exhibiting a structured, three-dimensional vortex-like resonance

of the magnetic and electric field components.

The configuration depicted in Figure 3 models the composite spin, orbital, and

nutational components intrinsic to the solitonic structure in R(3)SO(3), offering

an intuitive visualisation of how the fundamental rotational degrees of freedom

aggregate to form a stable field structure.

◦ If m > 1, the above representation is not merely scaled like a lighthouse beam

reaching into the distance. Rather, the enlarged structure (mlo)3 consists of m3

individual space quanta, each undergoing three-dimensional gyration with varying

phasing. At a position r⃗ = rxx̂ + ryŷ + rzẑ , there exists a space quantum

◦
Υ(⃗r ) dsc−−→by


ω

φ

◦
ψ

 =


cxøcxw syøcyw −szw

−cxs sxø + sxs cxøsxw cys cyø + sys syøsyw szs czw

sxs sxø + cxs cxøsxw −sys cyø + cys syøsyw czs czw



x̂

ŷ

ẑ

 ,

where, for example, cxw := cos(ωwt + ωw rx/c) and sys := sin
(
ωst + ωsry/c

)
, etc.,

with r = r lo/2.
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Figure 3: Visualisation of gyrations. The white arrow within the disc represents the magnetic
vector (analogous to the second hand of a watch). The blue face indicates the forward-facing
side of the disc, while the orange face indicates the rear-facing side; these coloured disc faces
serve purely as visual aids to convey orientation and have no direct physical interpretation.
The green pointer marks the 12 o’clock position and traces the indicated path. In the
illustrated example, for each complete orbital period, there are four nutational periods. The
sequence is generated with angular rates ωs = 5, ωø = 1/2, and ωw = 2, requiring a full 4π
rotation to complete one full cycle. This configuration models the composite spin, orbital,
and nutational components inherent to the solitonic structure in R(3)SO(3).

Therefore,
◦
Υ(m) is a collection of m3 quanta, symmetrically arranged around a

central point (the origin of the internal reference frame), each gyrating synchronously

with all the others but with specific phasing depending on its position.

Furthermore, the energy does not scale with the volume but with the cross-

sectional area, that is,
◦

EΥ(m) = −hm2
√
ωs

2 +ωo
2 +ωw

2.

Each magnetic flux quantum occupies a cross-section of area l 2
o and volume l 3

o ,

meaning that only one flux quantum may exist per space quantum. If the structure

is only partially populated with magnetic flux quanta—that is, fewer than m2 flux

quanta occupy the available cross-sectional area—then the energy becomes
◦

EΥ(f) = −hf
√
ωs

2 +ωo
2 +ωw

2, with f <m2.

N O T A T I O N (Hollowed Soliton). We introduce the term hollowed soliton to describe

an aggregated soliton configuration in which the cross-sectional structure is only

partially populated with magnetic flux quanta. Each such flux quantum requires a

cross-sectional area l 2
o and a volume l 3

o . The energy of this configuration is reduced

to
◦

EΥ(f) = −hf
√
ωs

2 +ωo
2 +ωw

2, with f <m2.

A complete description requires specifying the corresponding field structure, which

will be developed in subsequent sections.
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5.2 The Aleph Function Defines Fields and Potentials

We generalise the scalar Planck constant −h to a spatially dependent, vector-valued

action field −h (⃗r ) ∈R3 ⊂ R(3)SO(3), which encodes directionally structured quantum

inertia. For clarity, it is important to note that the magnitude of this vector-valued

field is constant, such that ∥−h (⃗r )∥ = −h. This allows us to explore the spatial deriva-

tives of −h (⃗r ), specifically d2−h (⃗r )/d⃗r 2, while maintaining the fundamental scale of

quantum action.

Energy is then defined through frequency modulation of this field, for example:

◦
EΥeff = ∥−h (⃗r )∥ ·

»
ω2

s +ω2
o +ω2

w ,

or, in the case of structured solitons such as photons with orbital angular momen-

tum,

Ĕ = −h (⃗r ) ·ωs(1+cø).

The ℵ function characterises the radial and compositional dependence of a soliton’s

normalised quantum field, which is an inertial field, F I, both within and beyond its

boundary. It ensures continuity, balance, and conservation across the entire radial

extent. The defining condition is

ℵ(r ) =ℵ′(r )+ℵ′′(r ) = 0 that is,

∫ 0

m
F (r)dr+

∫ ∞

m
F (r)dr= 0.

This ensures that when a soliton A traverses the radial path from the centre of soliton

B to infinity, both solitons return to their original state. That is, the sum of all

quantum forces is zero, and neither soliton gains nor loses energy along the path; the

structural compositions at both ends remain unchanged. This reflects the principle

of the nilpotent universe, whereby every physical interaction occurs within a globally

balanced system, and each soliton’s contribution is offset by its surrounding field

such that the total configuration remains identically null.

This condition of nilpotency is not merely conceptual, but is dynamically re-

alised through the curvature of the action field. It is not the action alone but its

structured variation under effective frequency that governs soliton dynamics. The

second spatial derivative d2−h (⃗r )/d⃗r 2 expresses the curvature of the action field

within R(3)SO(3), and is instrumental in ensuring that quantum forces cancel over

radial paths. It governs how momentum gradients are spatially balanced and en-

sures that interactions—though locally non-trivial—globally sum to zero. In this way,

nilpotency emerges from the spatial structure of the vector-valued action field and

its modulation by effective frequency.

L E M M A 5 . 1 : Curvature Criterion for Topological Stability.

The condition of topological stability for a soliton field configuration is dynami-

cally realised through the curvature of the vector-valued action field −h (⃗r ) ∈ R3 ⊂
R(3)SO(3). Although the magnitude ∥−h (⃗r )∥ = −h remains constant, its spatial struc-

ture encodes directional information relevant to the soliton’s internal gyration modes.

The second spatial derivative

d2−h (⃗r )

d⃗r 2
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acts as a stability operator that quantifies the resistance of the soliton’s field structure

to smooth deformations. Under transformations in the R(3)SO(3) symmetry group,

the preservation or covariant transformation of this curvature ensures that the soli-

ton’s internal structure remains invariant. Consequently, nilpotency and topological

stability are enforced not abstractly, but via the curvature of the generalised action

field.

Thus, topological stability is realised when the curvature profile of −h (⃗r ) remains

structurally consistent under all admissible transformations in the R(3)SO(3) sym-

metry.

Having established the role of curvature in maintaining topological stability, we now

turn to the geometric consequences of this structure: how internal field vectors give

rise to soliton trajectories, including curved and spherular paths.

L E M M A 5 . 2 : Kinematics and Resonances from Internal Field Geometry.

Within the R(3)SO(3) framework, the internal field vectors φ and ψ, defined by the

triple product in the field equation system

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
,

generate a spatial velocity vector ν that defines the soliton’s trajectory. When this

velocity is integrated over time,

r⃗ (t ) = r⃗0 +
∫
ν(t )dt ,

the resulting path is determined by the local orientation and interaction of the

internal field vectors.

The waveform illustrated in Figure 1 (pp. 9) exemplifies this curvature mech-

anism in contrast to a conventional travelling plane wave. This structure allows

for the emergence of curved propagation modes—including straight, circular, and

spherular paths—without requiring external potentials or imposed geometric con-

straints. The spherular waveform illustrated juxtaposes a structured, soliton-based

curvature against a conventional plane wave, demonstrating that coherent, curved

wave propagation arises naturally from the internal field geometry.

Analogously, the internal field vectors φ and ◦
ψ, defined by the triple product in

the field equation system

◦M(ω,φ, ◦
ψ) :=

ß
ω= φ× ◦

ψ

φ ·φ , φ=
◦
ψ×ω
ω ·ω , ◦

ψ=ω×φ
™

,

provide the corresponding kinematic structure for the three-dimensional gyration

vector ω. These internal rotational cycles form coherent vortices that encode the

soliton’s spin, orbital, and nutational structure within its localised space. As with

the translational case, these vortices do exhibit topological richness, including axial

symmetries and directionally structured geometric resonances that may be one-

, two-, or three-dimensional in character, fully determined by the self-consistent

interaction of the internal field vectors.
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The internal structure defined above not only determines the soliton’s trajectory but

also encodes its spatial energy distribution, as formalised in the following corollary.

C O R O L L A R Y 5 . 2 . 1 : Energy Gradient from Structured Gyration.

Let Ω=ωs x̂ +ωøŷ +ωw ẑ denote the internal gyration rate vector of a soliton in the

R(3)SO(3) framework, representing spin, orbital, and nutational components. Then

the spatial energy distribution of the soliton is given by

E (⃗r ) = −h (⃗r ) ·Ω,

where −h (⃗r ) is the vector-valued action field. This energy gradient governs the curva-

ture of the soliton’s path and determines whether its trajectory is open (e.g., photon-

like), circular, or closed and spherular, depending on the resonance conditions

among the components of Ω.

Closed trajectories arise when the internal gyration frequencies satisfy resonance

conditions such that the phase structure completes in integral multiples of 2π. The

resulting motion is not imposed externally but emerges naturally from the local

structure of the action field and the internal field geometry.

N O T E . The periodicity of internal motion and the resonance conditions associated

with closed trajectories are expressed through the sinusoidal modulation present in

the solution matrix S. These encode the time-dependence of the soliton’s internal

rotational modes.

D E F I N I T I O N 5.1: The ℵ Function. The ℵ function defines a soliton’s radial quan-

tum field structure through a pair of integrals representing the inward and outward

contributions:

• ℵ′(v,r ) for 0 ≤ r ≤ m lo/2, integrates the quantum field F (r) from the soliton’s

boundary inward to the centre. This defines the efficacy of a soliton

• ℵ′′(v,r ) for r ≥m lo/2, continues the integration from the soliton’s boundary out-

ward to infinity. This defines the presence of a soliton.

Recalling that v= m2/f, the ℵ components take the general form:

ℵ′(v,r) =
∫ 0

m

m
f

( r
m

)m2

f
−1

dr = −1, for r≤m, r ∈N,

ℵ′′(v,r) =
∫ ∞

m

m
f

(m
r

)m2

f
+1

dr = 1, for r≥m,

giving

ℵ(v,r) =ℵ′(v,r)+ℵ′′(v,r) = 0.

The cancellation condition imposed by the ℵ-function leads directly to a global

conservation law for energy flow along soliton trajectories.

T H E O R E M 5 . 1 : Nilpotent Energy Conservation along Soliton Trajectories.

Let a soliton be characterised by the vector-valued action field −h (⃗r ) ∈R3 ⊂ R(3)SO(3)
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and its internal gyration structure Ω=ωs x̂ +ωøŷ +ωw ẑ , such that the spatial energy

density is given by the projection:

E (⃗r ) = −h (⃗r ) ·Ω.

The field configuration satisfies the nilpotency condition defined by the ℵ-function:

ℵ(⃗r ) =ℵ′(⃗r )+ℵ′′(⃗r ) = 0,

which guarantees that the inward and outward quantum field contributions cancel

exactly:∫ m

0
F (r)dr+

∫ ∞

m
F (r)dr= 0.

Then, the total energy flux along any soliton trajectory—whether linear, circular,

or spherular—is exactly zero when integrated across the complete radial domain.

That is,∫
R3

∇· (E (⃗r )ν(⃗r ))d3r⃗ = 0.

This implies that solitons propagate in curved or closed orbits without radiative

energy loss. The internal energy exchange is locally dynamic but globally conserv-

ative, in full agreement with the nilpotent structure of the universe. In particular,

this establishes the physical basis for radiation-free rotational motion, essential to

modelling bound particle states such as electrons.

P R O O F . The spatial energy density is defined as E (⃗r ) = −h (⃗r )·Ω, where Ω is constant

for a given soliton type. Since −h (⃗r ) is normalised by the ℵ-function to ensure global

cancellation across the soliton’s domain, the net flux of E (⃗r )ν(⃗r ) over space vanishes

under divergence integration. This follows directly from the integral expression for

ℵ(⃗r ) and its property ℵ = 0. Thus, curved or closed soliton paths do not result in

radiative energy loss.

We now formalise how such energy densities arise from quantised fields and

their associated potentials.

D E F I N I T I O N 5.2: Fields and Potentials. The relationship between the potential V(r )
and its corresponding field F (r ) is given by

F (r ) =−dV(r )/dr .

The ℵ function imposes a quantised radial structure on the soliton’s field:

F (r) :=


m
( r
m

)m2

f
−1

, if r≤m, r ∈N

m
(m
r

)m2

f
+1

, if r≥m.
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having multiplied by f, since the ℵ function is normalised, the potential takes the

form:

V(r) :=


m
( r
m

)m2

f , if r≤m, r ∈N

m
(m
r

)m2

f , if r≥m.

For hollowed solitons, where the vacancy ratio satisfies v > 1, the quantum field

within the region mlo forms a potential well. Beyond this region, the field decays

rapidly as 1/r n with n > 2, leading to quantum forces of shorter range than the

Coulomb interaction, which decays as 1/r 2. This structural feature provides a natural

mechanism for short-range interactions and may offer insight into confinement

phenomena in QED and QCD.

5.3 Soliton Interactions

Quantised electromagnetic solitons Υ exhibit topological stability through invariant

field configurations arising from three-dimensional rotations in R(3)SO(3), ensuring

that their distinct interaction properties are preserved under continuous transforma-

tions.

Any solution to the field equation system M or
◦M describes a quantised topo-

logical electromagnetic soliton Υ. These solutions define the spatial structure of Υ,

while the ℵ(r ) function characterises the corresponding quantum field strength. The

field configuration at a position r⃗ reflects the internal structure of the soliton.

For example, the potential V(Υ) of a soliton Υ at a position r⃗ = rxx̂ + ryŷ + rzẑ
is given by:

V(Υ(⃗r )) dsc−−→by


ω

V
(
φ
)

V
( ◦
ψ
)
 = V

(
2r

lo

)
cxøcxw syøcyw −szw

−cxs sxø + sxs cxøsxw cys cyø + sys syøsyw szs czw

sxs sxø + cxs cxøsxw −sys cyø + cys syøsyw czs czw



x̂

ŷ

ẑ

 ,

where, for example, cxw := cos(ωwt + ωw rx/c), and sys := sin
(
ωst + ωsry/c

)
), etc.,

and r = r lo/2.

Importantly, the quantum fields do not carry energy; the energy is confined

within the soliton itself. Thus, the associated quantum fields are instantaneously

available throughout space, even as the soliton propagates.

The quantum interaction between two solitons Υ1 and Υ2 produces a quantum

force, given by:

I 1−2
Q (⃗r ) =

◦
ϵ0(φ1 ×V

( ◦
ψ2

)
)

φ1 ·φ2
, I 2−1

Q (⃗r ) =
◦
ϵ0(φ2 ×V

( ◦
ψ1

)
)

φ2 ·φ1
.

These interactions arise from the cross-coupling of one soliton’s magnetic flux

with the other’s electric potential . Since IQ has units of action per radian (angular

momentum), the associated interaction torque is given by

T 1−2
Q (⃗r ) = dI 1−2

Q (⃗r )

dt
.

(35)



TOWARDS A QUANTUM UNIFIED FIELD THE ORY A.L. Vrba

This torque is not aligned with the relative position vector r⃗ ; its direction is deter-

mined by the ternary cross products in R(3)SO(3). This defines a quantum elec-

trodynamic torque distinct from both Coulomb and gravitational forces. A detailed

analysis is beyond the scope of this work. However, in the context of optics, this

torque provides a possible explanation for phenomena such as the dispersion of

incoherent (white) light beams, optical resonances (e.g., in free-electron lasers), and

laser-based particle beam cooling, among others.

5.4 Translational Motion

The soliton

◦
Υ

dsc−−→by

ωφ
◦
ψ

 =
 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

x̂ŷ
ẑ

 ,

describes a stationary, three-dimensional gyration of a quantised space unit l 3
o . As

defined in Section 1.2 (pp. 8), this soliton exhibits three distinct types of rotational

motion: spin gyration (ωs) about the x axis, orbital gyration (ωo) around the initial

y axis, and nutational gyration (ωw ) about the initial z axis. These combined gyra-

tions define the internal topological structure of the soliton; there is no physical or

translational motion.

The gyration vector is

Ω=ωs x̂ +ωøŷ +ωs ẑ ,

and the energy of the soliton is given by

◦
EΥ = −h

»
ω2

s +ω2
o +ω2

w .

Through rotational transformations, the topological structure of the soliton’s

magnetic and electric fields is altered, transforming the stationary soliton Υ into a

propagating entity such as a gamma particle traversing space at the speed of light

|ν|:

Υ⃗
dsc−−→by

 νφ
ψ

=
 (1 0 0)

ecωøt emωwt (0 cosωst sinωst )
ecωøt emωwt (0 −sinωst cosωst )

x̂ŷ
ẑ

 ,

which possesses spin angular momentum (SAM, ωs), orbital angular momentum

(OAM, ωø), and nutational angular momentum (NAM, ωw ). The energy remains

invariant:

EΥ = −h
»
ω2

s +ω2
o +ω2

w .

These rotational transformations arise from the quantum interactions discussed

in the previous section. However, such transformations may also occur incremen-

tally:

◦
Υ〈→θ〉 = cos

→
θ

◦
Υ+ sin

→
θ Υ⃗,

resulting in a soliton
◦
Υ〈→θ〉 that possesses both a gyrational component

◦
Υ and a

translational component Υ⃗, with velocity v⃗ = sin
→
θνx̂ .
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A X I O M 5 . 1 : Orthogonality of Gyrating and Translational Energy.

In the R(3)SO(3) framework, energy contributions from gyrating and translational

soliton states are orthogonal components of a single conserved structure. The struc-

tural energy of a soliton undergoing such a transition is expressed as a complex

sum:
◦

E 〈→θ〉
Υ

= ◦
EΥ+ iE⃗Υ,

where
◦

EΥ is the gyrating energy and E⃗Υ is the translational energy arising from

field-induced structural rotations resulting in motion. The imaginary unit i encodes

the structural orthogonality of these energy modes within the complexified soliton

formalism of R(3)SO(3). The physical, or effective, energy is given by

EΥeff =
∥∥∥∥ ◦

E 〈→θ〉
Υ

∥∥∥∥=
√ ◦

E 2
Υ
+ E⃗ 2

Υ
.

With this framework, the complexified energy becomes:

E 〈→θ〉
Υ

= −h cos
→
θ
»
ω2

s +ω2
o +ω2

w + i−h sin
→
θ
»
ω2

s +ω2
o +ω2

w ,

yielding an effective total energy:

EΥeff = −h
»
ω2

s +ω2
o +ω2

w .

Although the above derivation focuses on linear motion, it extends naturally to

orbital and spherular motion (orbit plus nutation):1 0 0
0 cs ss
0 −ss cs


photonic motion

 cø 0 −sø
ss sø cs sscø
cs sø −ss cscø


orbital motion

 cøcw søcw −sw
−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw


spherular motion

5.5 Inertial and Energising Fields; Revisiting Charge

Returning to the compound soliton state

◦
Υ〈→θ〉 = cos

→
θ

◦
Υ+ sin

→
θ Υ⃗,

with its associated complexified energy,

E 〈→θ〉
Υ

= −h cos
→
θ
»
ω2

s +ω2
o +ω2

w + i−h sin
→
θ
»
ω2

s +ω2
o +ω2

w ,

we observe that this configuration results from a soliton–soliton interaction. No en-

ergy is exchanged; instead, the solitons respond to each other through their quantum

field configurations. These are termed inertial fields: they influence structure and

dynamics without transferring energy.

However, physical processes also require energising fields—fields capable of me-

diating the transfer and redistribution of energy. This leads us to a fundamental

classification:

D E F I N I T I O N 5.3: Inertial and Energising Fields. We distinguish two fundamental

classes of fields within the R(3)SO(3) framework:
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◦ Inertial Fields, generated by electromagnetic solitons (denoted F I), associated

with structural potentials V I. These fields do not convey energy; instead, they

mediate topological and configurational influences, as in the Aharonov–Bohm

effect. Their effects are non-local, affecting soliton configuration and phase.

◦ Energising Fields, responsible for actual energy exchange. These are not produced

by electromagnetic solitons directly, but by structural extensions whose field geom-

etry enables energy propagation—interactions observed classically as work, force,

or radiation.

This distinction prompts a deeper question: if solitonic fields are inherently

inertial, what mediates energy transfer? The resolution lies in re-evaluating the

notion of electric charge. Specifically, we must distinguish between:

• The scalar charge e, which governs atomic-scale field binding (e.g., Coulomb

interactions);

• A directional, structured quantity l that mediates energy transfer at a distance

through structured fields.

This leads naturally to a new ansatz.

A X I O M 5 . 2 : Structured Charge Duality.

The charge associated with atomic-scale interactions (e.g., bound electrons) is struc-

turally distinct from the effective charge responsible, for example, for translational

energy transfer in electric currents. Though numerically equal in conventional units,

these charges fulfil fundamentally different roles and must not be treated as inter-

changeable.

The elementary charge e, treated as a scalar constant, governs Coulombic inter-

actions. However, energising interactions—those involving the transfer of energy

through fields—require a separate structure: the load, denoted l∈R3 ⊂ R(3)SO(3),

a directional object intrinsic to energy-carrying configurations.

This load serves as the dynamical counterpart to e, coupling with the spatially

structured action field −h (⃗r ) to generate quantised magnetic flux and energising

soliton interactions. Its vectorial character enables the emergence of flux pairs,

structured resonance, and energy exchange mechanisms absent in scalar theories.

This axiom is supported by theoretical considerations and by the proposed exper-

iment outlined in Appendix 7 (pp. 97), which is specifically designed to distinguish

between the roles of scalar charge and directional load in electromagnetic processes.

N O T E . The distinction introduced here allows for a coherent treatment of both

bound field configurations and dynamic energy transfer. While the charge e gov-

erns Coulomb-type field interactions, the directional charge responsible for energy

propagation will be defined separately as a load in the next step.

N O T A T I O N (Load as Operational Charge). To mediate dynamic interactions and di-

rectional energy transfer between solitons, we introduce the vector-valued load,

denoted l∈R3 ⊂ R(3)SO(3). This object plays the role of a coupling vector in field-

based energy transport and current-like interactions, distinct from the scalar charge

e associated with localised electromagnetic fields.
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The load lappears in all expressions involving soliton kinematics and flux trans-

port, particularly those based on the field equation system M. The quantum number

ℓ, reserved for orbital quantisation, remains unaffected and is not to be confused

with the load.

To describe magnetic flux consistently within the structured charge framework, we

first express it in terms of the local action field:

D E F I N I T I O N 5.4: Vector-Valued Magnetic Flux. The local magnetic flux vector as-

sociated with a soliton is defined as

φ(⃗r ) :=
−h (⃗r )

κl
, with reference to (13) in Theorem 4.1 (pp. 22): ∥φ∥ = h

κe
,

where −h (⃗r ) ∈R3 ⊂ R(3)SO(3) is the vector-valued action field, and l∈R3 ⊂ R(3)SO(3)
is the structured load. This formulation captures the orientation and magnitude of

quantised magnetic flux and governs all cross-product and dot-product interactions

in solitonic field dynamics.

Promoting the quantum load l to a directional object necessitates a refined defini-

tion of flux:

D E F I N I T I O N 5.5: Structured Quantum Charge. The structured quantum load l∈
R3 ⊂ R(3)SO(3) is defined as a directional coupling vector, such that interaction-

specific charges (e.g., electromagnetic) correspond to distinct components or projec-

tions. The magnetic flux associated with a soliton is then expressed as

φ(⃗r ) :=
−h (⃗r )

l
.

This orientation-dependent coupling between the local action field and the quan-

tum load enables multiple interaction types to coexist within a unified geometric

framework.

Having established the vectorial structure of the action field −h (⃗r ) and the direction-

dependent load l, we now define load polarisation and the symmetry breaking it

induces:

D E F I N I T I O N 5.6: Load Polarity and Symmetry Breaking. The quantum load l∈R3 ⊂
R(3)SO(3) admits two distinct energetic polarisations:

• Positive polarity:

l+ := l0 ec(π/2+δc),

• Negative polarity:

l– := l0 e−c(π/2+δc),

where l0 ∈R is a scalar, and δc denotes small symmetry-breaking angles.

Crucially, the sum of these polarisations is non-zero:

l+ +l– ̸= 0,
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indicating a fundamental asymmetry in the energetic configuration of structured

loads. This symmetry breaking underlies the emergence of long-range residual forces,

including gravitation and the weak nuclear interaction.

We now define the fundamental flux pairing associated with structured load polarity:

L E M M A 5 . 3 : Quantised Flux Pairing and Structural Neutrality.

Magnetic flux within the R(3)SO(3) framework is represented not as continuous

field lines but as quantised vector pairs {φ, φ̄}, where each flux component is defined

by:

φ(⃗r ) :=
−h (⃗r )

κl+ , φ̄(⃗r ) :=
−h (⃗r )

κl– ,

with −h (⃗r ) ∈R3 ⊂ R(3)SO(3) the structured action field and l+,l– representing the

polarised structured loads.

The pair forms a flux-conserving structure satisfying:

φ+ φ̄≈ 0, ∥φ∥ = ∥φ̄∥,

and represents the minimal unit of magnetic flux in solitonic interactions.

This quantised pairing provides the mechanism by which neutral structures, such

as atoms, maintain topological and energetic stability. Analogous behaviour appears

in type-II superconductors, where Abrikosov flux vortices manifest as boundary-

bound source–sink pairs, reflecting this same pairing mechanism at the macroscopic

level.

Quantised flux, therefore, is not an emergent or averaged quantity, but a founda-

tional entity in the topological dynamics of soliton coherence, energy conservation,

and field interaction.

R E M A R K . We are working with rotating field vectors. For example, φ denotes a

rotating vector that acts as the source of a north-pointing elementary magnetic flux.

Importantly, −φ still acts as a source of a north-pointing flux, but with reversed

direction or 180 degree rotation.

To distinguish between flux emission and absorption, we introduce φ̄ as the mag-

netic field vector that absorbs a north-pointing flux. This leads to the superposition

relations:

φ+ φ̄= 0, φ− φ̄= 2φ.

Below is a visual representation of this distinction, where the symbol Ⓢ denotes

the flux source or sink—that is, the point of origin of the soliton that emits or absorbs

the flux.

φ 7→ SⓈ−→N, −φ 7→ N←−ⓈS

φ̄ 7→ NⓈ←−S, −φ̄ 7→ S−→ⓈN

C O R O L L A R Y 5 . 3 . 1 : Electric Flux Lattices and Structured Field Coherence.

The electric flux vector ψ ∈R3 ⊂ R(3)SO(3), defined by the field equation system,

ψ(⃗r ) = ν×
−h (⃗r )

κle
, ◦

ψ(⃗r ) =ω×
−h (⃗r )

κle
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exhibits the same quantised structure and orientation-dependent coherence as mag-

netic flux. Conjugate pairings of ψ and ψ̄ form discrete electric flux units that

aggregate into lattices.

Such flux lattices appear in a range of physical systems: in Type-II superconduc-

tors as magnetic induced vortex lattice, topological solitons in nematic liquid crystals

electrically induced, or in Bose Einstein condensates mechanically induced. These

phenomena, though dimensionally distinct, reflect the same geometric principles

and field quantisation.

This corollary extends the unified soliton framework to structured electric in-

teractions and identifies a common quantised flux architecture underlying both

microscopic and mesoscopic domains.

R E M A R K 5.1: Flux as Interaction Unit. The pairs {φ, φ̄} and {ψ,ψ̄} define the min-

imal, discrete units of interaction in the soliton framework. These flux structures

enable local field coherence, maintain quantised conservation laws, and underlie all

inertial and energising interactions in the R(3)SO(3) framework.

This reconceptualisation of flux as an orientable, quantised vector pair replaces

the classical continuum of field lines with a discrete, geometric principle—revealing

flux as a structural agent of coherence and not merely a field strength descriptor.

N O T E . The separation between atomic charge and structured load, as introduced

in Axiom 5.2 (pp. 38), frames all subsequent flux expressions. Energy transfer no

longer follows field carriers but is instead mediated through structural coupling

to quantised flux defined by the local action field. This forms the foundation for

emergent interactions in the nilpotent framework.

Furthermore, this separation of atomic charge and structured load not only resolves,

for example, the physical origin of energy flow (electric current), but also provides

the foundation for gravity as an emergent interaction arising from residual symmetry

breaking.

D E M O N S T R A T I O N 5.1: Gravity and Weak Forces from Symmetry-Breaking. Consider

two conjugate load elements:

l+ = ei (π/2+δ), l– = e−i (π/2+δ),

where δ ∈ R quantifies a small symmetry-breaking deviation from perfect phase

opposition.

Define interaction strengths via inner products:

(l+,l+) =−e2iδ lim
δ→0

(l+,l+) = 1 (electromagnetism)

(l–,l–) =−e−2iδ lim
δ→0

(l–,l–) = 1 (electromagnetism)

(l+,l–) = 1, (electromagnetism)

(l+l–,l+l–) = 4sin2δ. (gravity emerges)
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That is, for small |δ|≪ 1, a residual atomic interaction emerges, captured by the

total:

(l+
1 ,l+

2 )+ (l–
1 ,l–

2 )+ (l+
1 ,l–

2 )+ (l–
1 ,l+

2 ) = (l+l–,l+l–) = 4sin2δ.

This residual coupling—suppressed by many orders of magnitude compared to

electromagnetic strength—corresponds to gravitational attraction between neutral

bound systems (e.g., atoms).

Takeaway. This one-dimensional proof-of-concept illustrates the emergence of

gravity as a residual effect of symmetry breaking within the R(3)SO(3) framework. In

subsequent sections, this idea is extended to a fully symmetrical structure compris-

ing three component charges—load, fervour, and vigour—whose mutual couplings

within compounded particles give rise to the phenomena conventionally associated

with the strong and weak interactions. These forces are thus reinterpreted not as fun-

damental axioms, but as emergent features arising from broken symmetries within a

unified, nilpotent field structure.

6 The Nilpotent Universe

By retaining a linear and fully differentiable algebra, the principle of superposition

enables the nine-dimensional space R9 to be radially reduced into three subspaces:

Y , C , and M , a process denoted by R(3). These subspaces are related by M = Y ×C ,

and are governed by the special orthogonal gauge group SO(3×3). While SO(3×3)
retains the core properties of SO(3), it operates independently of the fact that each

of its defining axes is itself a radially reduced space—each equivalent to a three-

dimensional spatial direction. This structure ensures the viability of R(3)SO(3),

maintaining rotational symmetries while embedding transformations across the

coupled subspaces.

When working within the space Y using R(3)SO(3), the spaces C and M con-

tribute complex axes to the real space Y , thereby extending R(3)SO(3) into a fully

differentiable and cyclic algebraic framework.

Physically, the space Y represents the observable three-dimensional world in

which interactions take place. Electric charge resides in C , while the mass-binding

strong force arises in M . The full configuration space W binds these components

together.

We are now in a position to formalise the governing field equation system for the

entire Universe. This system arises as the aggregate of all quantised electromagnetic

solitons defined in the radially reduced subspaces Y ,C , M , each equipped with a

R(3)SO(3) structure and collectively embedded in the extended symmetry group

SO(3×3).

A X I O M 6 . 1 : Nilpotent Universe Field System in SO(3×3).

Let U denote the universal field equation system, defined as the aggregate of all

quantised topological electromagnetic solitons within the radially reduced subspaces

Y ,C , M , each equipped with R(3)SO(3) structure and collectively embedded in
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the extended symmetry group SO(3×3). The system is given by the union of the

following two coupled formulations:

U (νU,φU,ψU) :=
ß
νU = φU ×ψU

φU ·φU

, φU = ψU ×νU

νU ·νU

, ψU = νU ×φU

™
,

U (ωU,φU, ◦
ψU) :=

ß
ωU = φU × ◦

ψU

φU ·φU

, φU =
◦
ψU ×ωU

ωU ·ωU

, ◦
ψU =ωU ×φU

™
.

We now define
−
U as the contra-universe field equation system, structurally mirroring

U but composed of solitons with negative energy—termed contra-matter. These are

not mapped one-to-one to solitons in U ; instead, the aggregate of all contra-solitons∑−
Um counterbalances the aggregate of all solitons

∑Un , where the indices m and n
need not match.

The nilpotent condition is expressed as:

U + −
U = 0,

meaning the total field content of the Universe and contra-Universe—across energy,

topology, and structure—sums to zero. This reflects a fundamental balance embed-

ded within the full field symmetry: the totality of all solitons and contra-solitons

exactly cancels, even though their spatial distributions, modes, or indexing may

differ.

While U describes the physical universe we observe,
−
U exists as a contra-physical

domain that is not accessible to direct observation. The deeper cosmological impli-

cations of this duality—including the divergence of U and
−
U following their initial

overlap—are addressed later in the context of inflationary separation (see Section 18

(pp. 91)).

Since U and
−
U span the same R(3)SO(3) symmetry across the subspaces Y ,C , M ,

their combined structure preserves the identity:

SO(3×3) = R(3)SO(3),

and the condition det
(
U + −

U
)= 0 encodes the nilpotency of the total Universe field

system. This formulation extends conservation principles beyond classical limits and

provides a structural basis for interpreting quantum non-locality, entanglement, and

the ultimate energy balance between the observable and contra-physical domains.

6.1 Nilpotency and Contra-Matter as Structural Reflection

The nilpotent condition

U + −
U = 0

together with

det
(
U + −

U
)= 0

implies a deeper symmetry beyond simple cancellation: the contra-Universe field

system
−
U is not merely an inverse of U , but a structural reflection across the full

SO(3×3) configuration space. This reflection occurs not in coordinate space but
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within the field-theoretic symmetry group, R(3)SO(3) ⊂R9, where each axis repre-

sents an embedded subspace direction with topological field content.

D E F I N I T I O N 6.1: Contra-Matter as Structural Reflection. Contra-matter refers to soli-

tons of negative energy residing in the contra-Universe field system
−
U , defined as a

structural reflection of the Universe field system U within the symmetry algebra of

SO(3×3). The reflection is defined by:
−
U :=−U ,

with the sign reversal acting on all field vectors and phase components such that

their topological, energetic, and algebraic contributions cancel exactly.

This formulation introduces a symmetric duality: for every energetic configu-

ration in U , there exists a reflected configuration in
−
U , not necessarily pointwise,

but such that the aggregated field system remains nilpotent. Unlike anti-matter,

which differs only in charge, contra-matter is defined by opposite energy, phase, and

propagation signature.

P R O P O S I T I O N 6.1: Nilpotency as Generalised Conservation. The nilpotent condition

U + −
U = 0 extends Noether’s theorem to the full field system, embedding energy and

structural conservation into the topological algebra. This means:

• The total energy of the Universe and contra-Universe is zero.

• The total angular momentum, field flux, and interaction action are null.

• Entanglement and non-locality are algebraic consequences of structural coupling

across R(3)SO(3), not violations of locality.

This interpretation allows a rethinking of cosmogenesis: the observable Universe

U and the contra-Universe
−
U may have originated as a symmetric pair within a

single initial domain. The inflation of U corresponds to the contraction (or collapse)

of
−
U , preserving nilpotency while establishing an arrow of time and an observable

energy asymmetry.

This framework lays the groundwork for interpreting gravitational, weak, and

dark phenomena as broken symmetries or residual effects arising from the structural

divergence of U and
−
U , to be developed in later sections.

R E M A R K 6.1: On Maxwell, Contra-Matter, in the Field System U . The universal field

equation system U , together with its contra-symmetric counterpart
−
U , encodes the

full aggregate of quantised solitons across the radially reduced subspaces Y ,C , M ,

encompassing both the structural and dynamical content of the Universe. It ex-

tends the classical Maxwell framework into a fully quantised, rotationally invariant

field theory within SO(3×3), embedding topological stability and conservation laws

directly into its algebraic structure.

In this construction, Maxwell’s equations are not approximations but rather the

foundational structure from which all field interactions—electromagnetic and other-

wise—emerge. For example, let the subspace C govern electric charge interactions.

The subspaces M and Y introduce additional quantised field domains, governed by
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the same Maxwell equations, but distinct in topology and physical effect. Interaction

with these domains gives rise to field-theoretic mechanisms responsible for binding

phenomena analogous to the strong interaction.

The presence of
−
U , as the contra-Universe field system, ensures that all physical

quantities—energy, momentum, angular momentum, and field action—are con-

served via the nilpotent condition U + −
U = 0.

This supports Poincaré’s insight that either everything is electromagnetic in

origin, or our understanding is merely epistemological. Within this framework, elec-

tromagnetism—or rather a global Maxwellism—constitutes the complete structural

basis of all physical fields. Contra-matter provides the necessary counter-structure

to restore universal balance, affirming that topological field symmetry—not sub-

stance—is the true foundation of physical reality.

R E M A R K 6.2: Chirality and Field Handedness. Because
−
U =−U , the contra-Universe

field system inherits the opposite handedness to that of U . If the solitons in U are

right-handed— following a standard orientation of cross products in three-space—

then those in
−
U are inherently left-handed.

This intrinsic chirality implies that the nilpotent Universe is not only structurally

and energetically balanced, but also chirally symmetric. The observable dominance

of right-handed fields in our Universe may thus reflect a cosmological chirality-

breaking event: the divergence of U and
−
U during early inflation. This offers a new

topological perspective on parity violation and handedness in quantum field theory.

C O R O L L A R Y 6 . 1 : CPT Symmetry under Nilpotency.

The nilpotent field structure U + −
U = 0, together with the determinant condition

det
(
U + −

U
) = 0, implies that the total Universe—comprising both U and

−
U—is

exactly CPT-symmetric. Charge (C), parity (P), and time-reversal (T) symmetries

are preserved globally when considered over the full dual field system defined in

SO(3×3).

However, within the observable domain U , the CPT-conjugate configurations ex-

ist exclusively in the contra-domain
−
U , which is causally and energetically divergent

from U . Consequently, searches for CPT-conjugate particles—such as CPT-symmetric

photons—within the U domain are necessarily null.

This corollary affirms that the Universe is not CPT-violating, but rather CPT-

partitioned. The full symmetry is preserved in the nilpotent structure, even though

it remains observationally incomplete from within any single domain.

T H E O R E M 6 . 1 : Multiplicative Conjugacy of the Contra-Universe Field System.

In addition to satisfying the nilpotent condition U + −
U = 0, the contra-Universe field

system
−
U also satisfies a multiplicative conjugacy:

U · −U = 1.

This identity expresses that
−
U is not merely the additive inverse of U , but its full

algebraic conjugate under the extended field symmetry. Importantly, this relationship

does not imply a one-to-one correspondence between individual solitons in U and
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−
U . Instead, it holds at the level of the aggregate field structure, whereby the total

configuration of
−
U conjugates that of U across the full algebra.

This field symmetry is further characterised by the ℵ function (see Definition 5.1

(pp. 33) and Section 5.2 (pp. 31)), which governs the balance and continuity of soliton

fields across radial trajectories. In particular, Theorem 5.1 (pp. 33) establishes that

energy is conserved through field curvature and inertial action, ensuring that the

conjugacy between U and
−
U applies not only algebraically, but also dynamically

across space.

This form of conjugate duality implies that the complete field content of U is

mirrored in
−
U—not individually, but structurally—in such a way that both additive

cancellation and multiplicative closure are preserved. It reinforces the CPT symmetry

of the combined system and affirms the universal field framework as closed, self-dual,

and algebraically consistent.

7 Quantum Entanglement

7.1 Quantum Entanglement as Nilpotent Conservation

All mono- or multi-body quantum interactions, Υn −→Υm , result in an entangled

output state Υm that preserves the total quantum structure of the initial configura-

tion Υn . Within the nilpotent universe framework, this is expressed as the invariance

of the full field system under transformation:

Un + −
Uo =Um + −

Up = 0.

Here,
−
Uo and

−
Up denote the contra-Universe field content corresponding to the

initial and final interaction states, respectively. In cases of local and symmetric

interactions (e.g., spontaneous parametric down-conversion), the changes may be

entirely balanced within the observable sector U , leaving
−
U unchanged. However,

for interactions involving large-scale solitonic aggregates— those whose energy or

structural complexity influences the global nilpotent balance—the contra-Universe

sector reflects these changes to ensure the total field system remains invariant and

nilpotent.

A representative case is the process Υ0 −→Υ1 +Υ2, where a pump photon Υ0 is

converted into two daughter photons, Υ1 and Υ2. This conversion may occur via

spontaneous parametric down-conversion (SPDC) or via a delayed emission pathway,

in which the pump photon excites an electron that decays through an intermediate

level, emitting two correlated photons.

The conservation laws implied by Noether’s theorem extend to all such field

interactions. In this formulation, quantum entanglement encodes conservation of

the original soliton’s full quantum state across all degrees of freedom. Specifically:

cycS0 =
(

cyc(R1S1)+cyc(R2S2)
)

/2 cyclicity preservation (soliton symmetry)

Ĕ0 = Ĕ1 + Ĕ2 structured energy preservation

p⃗0 = p⃗1 + p⃗2 momentum preservation

Ω0 =Ω1 +Ω2 angular momentum preservation

R0 = R1 +R2 internal symmetry (phase) preservation
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Here, R1 and R2 are zero-energy internal rotations, structurally induced by the

interaction of the solitons with the potential fields of the birefringent medium.

Following this entangling event, any subsequent local interaction affecting either

Υ1 or Υ2 must be reflected in the other in a manner that maintains the nilpotency

condition:

(U1 +U2)+ (
−
U1 +

−
U2) = 0.

This reciprocity ensures that entanglement remains a structural conservation con-

straint.

E X P E R I M E N T 1: Bell Test Discriminator for Entanglement Origin. The R(3)SO(3) frame-

work predicts that entanglement arises from structural field coherence rather than

from probabilistic collapse. To test this prediction, we propose a decisive experiment

using Type I spontaneous parametric down-conversion (SPDC), in which a vertically

polarised pump photon decays into two horizontally polarised daughter photons.

This constitutes a nilpotent process: the signal is rotated in a positive direction,

and the idler in a negative direction, yielding two daughter photons that are both

horizontally polarised.

A Bell test is then performed both before and after the insertion of quarter-wave

plates (QWPs), allowing a distinction to be drawn between latent entanglement and

dynamically emergent entanglement.

Specifically, the prediction is:

• Before inserting the QWPs, the signal and idler photons remain linearly polarised

and phase-locked to the macroscopic pilot wave of the originating beam. The Bell

test will detect no violation, not because the photons reconfigure internally, but

because coherence is preserved externally—the condition U + −
U = 0 is satisfied by

environmental adjustment rather than by solitonic freedom.

• After inserting the QWPs, the signal and idler photons enter circular polarisation

states |R〉 and |L〉, respectively. This imparts internal phase flexibility, allowing

dynamic solitonic shifts that satisfy the nilpotent field condition U+−
U = 0, thereby

enabling observable entanglement as internal coherence is maintained.

This prediction offers a clean falsification of the Copenhagen interpretation. If

correct, it demonstrates that Bell violations require not wavefunction collapse, but

the ability of solitons to self-align phases, thereby preserving the nilpotent Universe

of R(3)SO(3). This self-aligning ability requires that the photon be guided in a

circularly polarised field and governed by a non-local hidden variable that maintains

nilpotency during SPDC pair production and throughout subsequent interactions.

See Appendix B (pp. 98) for a detailed diagram and theoretical explanation.

7.2 Quantum Coherence, Decoherence, and Entanglement Entropy

Within the R(3)SO(3) framework, coherence and entanglement are not abstract

quantum phenomena, but manifestations of the structural integrity of solitons and

their internal symmetries. These symmetries, represented by zero-energy rotations

Ri , preserve the soliton’s cyclicity and phase—ensuring the soliton remains in a

coherent state.
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Coherence as Phase Preservation Quantum coherence is sustained when the in-

ternal phase rotations Ri of the soliton remain invariant under interaction. These

phase symmetries are conserved in all entangling interactions as a direct conse-

quence of Noether’s theorem, as shown in Corollary 6.1 (pp. 45) and Proposition 6.1

(pp. 44). Thus, coherent propagation corresponds to structural invariance within the

R(3)SO(3) configuration space.

Decoherence as Structural Deformation Decoherence occurs when a soliton’s in-

ternal phase structure is irreversibly modified by its environment. In this model,

decoherence is interpreted not as probabilistic collapse but as a topological defor-

mation within the soliton’s internal symmetry, leading to loss of phase correlation.

This does not destroy information, but transfers it into the broader field context.

Entanglement and Field Entropy The entanglement of solitons preserves total in-

formation even when subsystems appear incoherent. Since all interactions are

embedded within the nilpotent field condition U + −
U = 0, any apparent increase in

entanglement entropy reflects only the redistribution of phase information across

subsystems. Globally, no entropy is lost.

This suggests a new interpretation of entanglement entropy—not as disorder,

but as a measure of topological phase displacement within the soliton configuration

space. A formal definition of soliton field entropy will be addressed in future work,

extending from the internal symmetry degrees of freedom in R(3)SO(3).

7.2.1 Recoherence and Contra-Entanglement

In the R(3)SO(3) framework, coherence and entanglement are not probabilistic

features but arise from structural configurations of solitonic fields that collectively

satisfy the nilpotency condition:

U + −
U = 0.

This implies that any local change in the field structure (such as a measurement,

phase shift, or interaction) must be globally balanced across both U and
−
U . The co-

herence of quantum systems is therefore not lost in measurement—it is redistributed

across the field domains.

Recoherence. Conventional interpretations describe decoherence as an irreversible

entanglement of a system with its environment. In contrast, the R(3)SO(3) frame-

work permits recoherence when the structural conditions are reversed or symmetri-

cally restored. This accounts for observed effects in quantum erasers, delayed-choice

experiments, and cavity-based quantum optics, where systems can regain coherence

after apparent measurement.

Recoherence occurs not because the system returns to its prior quantum state,

but because the structural alignment of the soliton field returns to a configuration

compatible with its prior state. The field symmetry allows re-entry of coherence

under cyclic or controlled symmetry restoration.

Contra-Entanglement. Entanglement, too, finds a new expression in this framework.

While two solitons may appear entangled within U , their conservation properties

may in fact require corresponding field arrangements in
−
U . These contra-solitons,
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residing in the contra-universe field system, mirror the structural adjustments of

their U counterparts to maintain global nilpotency:

Ulocal +
−
Ucontra = 0.

This mechanism provides a deterministic foundation for nonlocality and may serve

as a conceptual basis for otherwise unaccounted conservation balances in apparent

vacuum fluctuations, dark sector phenomena, or unmeasurable entanglement traces.

P R O P O S I T I O N 7.1: Recoherence and Contra-Entanglement. Within the nilpotent field

framework, coherence and entanglement are preserved globally via redistribution

across U and
−
U . Measurement-induced decoherence corresponds to local reconfigu-

ration of U , with the coherence redistributed in
−
U . Under symmetric field conditions,

coherence may re-emerge, leading to recoherence. Additionally, entangled solitons

may require corresponding contra-entangled solitons in
−
U to preserve the nilpotent

field structure.

8 Solutions of M describe Quantised Topological Electromagnetic Soli-
tons

D E F I N I T I O N 8.1: Waves. In order for a physical phenomenon to be considered a

wave, its mathematical representation must lead to a specific second-order partial

differential equation, specifically the d’Alembert wave equation.

D E F I N I T I O N 8.2: Topological Stability. Within the R(3)SO(3) framework, topolog-

ical stability refers to the invariance of field configurations under continuous 3D

rotations acting on soliton fields defined in R3, whose internal structure is rep-

resented by rank-2 tensors embedded in a 9-dimensional real vector space. This

space arises from the soliton’s spatial embedding and its internal rotational degrees

of freedom, encoded in the structured tensor basis associated with the R(3)SO(3)
symmetry.

This form of stability does not arise from conventional topological invariants

(e.g., winding numbers or homotopy classes), but from the structural preservation

of the soliton’s electromagnetic field tensors under smooth transformations of the

internal rotational degrees of freedom.

A soliton is said to exhibit topological stability if its field configuration is pre-

served (up to equivalence under smooth transformations within the R(3)SO(3) sym-

metry group)—that is, if deformations that respect the group action leave its physical

structure and interactions invariant.

The mathematical condition for such structural preservation will later be ex-

pressed in terms of the spatial curvature of a generalised action field, denoted −h (⃗r ),

whose second derivative plays a key role in ensuring the soliton’s stability under

smooth deformations (see Lemma 5.1 (pp. 31)).

D E F I N I T I O N 8.3: Topological Soliton. In order for a physical phenomenon to be

considered a topological soliton, its mathematical representation must satisfy the

following conditions:
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1. It must lead to a specific second-order partial differential equation, namely the

d’Alembert wave equation.

2. It must exhibit a topological structure that is stable under propagation.

3. The topological structure must be in resonance with the wave solution derived in

1., ensuring consistent and sustained propagation without dispersion or dissipa-

tion.

L E M M A 8 . 1 : M and the d’Alembert Wave Equation.

Let {M, Ω} reside in the quantised orthogonal gauge group, R(3)SO(3). Then

solutions of

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
and

◦M(ω,φ, ◦
ψ) :=

ß
ω= φ× ◦

ψ

φ ·φ , φ=
◦
ψ×ω
ω ·ω , ◦

ψ=ω×φ
™

parameterised by

Ω= x̂ωs + ŷωø + ẑωn

are also solutions of the d’Alembert wave equation.

P R O O F . We seek a solution for a gyration that propagates along the path s⃗ = ∫
u⃗dt

and u2 = u⃗ · u⃗ The d’Alembert wave equation in this context is given by:

∂2φ

∂⃗s2 − 1

u2

∂2φ

∂t 2 = 0.

We describe φ simultaneously as a product of squared spatial and temporal compo-

nents:

φ= f (⃗s)2 = g (t )2 which gives: φ= f (⃗s)g (t ),

where f (⃗s) depends on position and g (t ) depends on time. Substituting this form

into the wave equation gives:

∂2 f (⃗s)g (t )

∂⃗s2 − 1

u2

∂2 f (⃗s)g (t )

∂t 2 = 0.

Dividing by φ= f (⃗s)g (t ) and multiplying by u2, we obtain:

u2

f (⃗s)

∂2 f (⃗s)

∂⃗s2 − 1

g (t )

∂2g (t )

∂t 2 = 0.

The first and the second terms are now independent of one another. Since f (⃗s) and

g (t) are independent functions of position and time, respectively, the derivatives

are total derivatives. For the above to hold, both terms must equal a constant.

Anticipating the solution, we introduce the constant −ω2/4:

u2

f (⃗s)

d2 f (⃗s)

d⃗s2 = 1

g (t )

d2g (t )

dt 2 =−ω
2

4
.
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The resulting ordinary differential equations resemble simple harmonic oscillators

with known solutions:

f (⃗s) = eiωs⃗/2u , g (t ) = eiωt/2.

Thus, the solution for φ becomes:

φ= eiωs⃗/2u eiωt/2 = eiωs⃗/u = eiωt = ei ks⃗/2+ωt/2,

where k =ω/u, and ω= ∥Ω∥.

Since this solution holds if s⃗ = ∫
u⃗dt , it follows that the parametrisation by Ω

satisfies the d’Alembert wave equation.

Therefore, by mapping u⃗ 7→ ν or u⃗ 7→ω ensures that the solutions of M and
◦M

are also solutions of the d’Alembert wave equation, which proves the lemma. □

D E F I N I T I O N 8.4: Resonances and Eigenvalues in Quantised Space. With Lemma 8.1

(pp. 50), the field equation system was reduced to the one-dimensional d’Alembert

wave equation:

∂2φ

∂⃗s2 − 1

u2

∂2φ

∂t 2 = 0.

Here, u may denote either a translational velocity ν or a gyration rate ω.

By mechanical analogy, an infinitely long guitar string supports vibrations of

arbitrary frequency. To illustrate, consider an impulse disturbance composed of

a superposition of all frequencies. The Fourier Transform of a continuous-time

impulse function, denoted δ(t ), is given by:

F (ξ) =F {δ(t )} =
∫ ∞

−∞
δ(t )e−iξt dt ,

where:

• F (ξ) is the Fourier Transform in the frequency domain.

• δ(t ) is the Dirac delta function (impulse).

• ξ is the angular frequency.

Utilising the sifting property of the Dirac delta function:∫ ∞

−∞
δ(t −a) f (t )dt = f (a)

In our case, we have δ(t ) = δ(t −0) and f (t ) = e−iξt . Applying the sifting property:

F (ξ) =
∫ ∞

−∞
δ(t )e−iξt dt = e−iξ(0) = e0 = 1

Therefore, the Fourier Transform of the impulse function δ(t ) is:

F {δ(t )} = 1

for all frequencies ξ.

In the mechanical analogy, the impulse propagates along the string at velocity u,

with the medium (guitar string) sustaining all frequencies ξ. In R(3)SO(3), the spatial

structure is treated as infinite, admitting all ξ for the impulse, but also provides
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further dimensions to spin the impulse. This provides a model for a photon as a

spinning impulse:

Υphoton =F {δ(t )}eiωst ,

with no restriction on the spin rate ωs , as all frequencies are allowed in an infinite

Universe.

This continuous spectral behaviour ωs characterises photons. In contrast, parti-

cles exhibit discrete energy levels, indicating the presence of resonance conditions.

Clamping a guitar string between two fixed points results in a discrete set of reso-

nance frequencies—eigenvalues—inversely proportional to the distance between the

clamps. Analogously, in the quantised spatial framework R(3)SO(3), fixed spacial

quanta act as boundary conditions for gyrations, producing discrete resonant modes.

Therefore, the quantisation of space yields a spectrum of eigenvalues that define

the allowed frequencies—or radial rates—of solitonic excitation. These resonance

conditions, or eigenvalues

{ωs , ωø, ωw },

uniquely characterise each particle by assigning a fixed triple of quantised frequency

components, determining rest energy and internal structure.

T H E O R E M 8 . 1 : Quantised Topological Electromagnetic Solitons Υ and
◦
Υ.

Let S denote the solution matrix satisfying the field equation systems M and
◦M.

An example solution is given by:

S =
 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

 where

cs := cos(ωst )
sø := sin(ωøt )

etc.

(16)

A quantised topological electromagnetic soliton Υ and its gyrated counterpart
◦
Υ are

defined by:

Υ
dsc−−→by Y = SA and

◦
Υ

dsc−−→by
◦
Y = SA,

◦ where:

Y :=
 νφ
ψ

 and
◦
Y :=

ωφ
◦
ψ

 (17)

with the following components:

ν translational velocity vector of the soliton,

φ magnetic field vector component,

ψ electric field vector component,

ω the gyration rate vector,
◦
ψ gyro-electric field vector component.
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◦ and where

A :=
â

b̂
ĉ

 , with ĉ = â × b̂ (18)

and the axes â, b̂ are drawn from:

{â, b̂} ∈ {ŷx, ŷy, ŷz, ĉx, ĉy, ĉz, m̂x, m̂y, m̂z}

The pair {â, b̂} must satisfy the structural condition ĉ = â × b̂, with m̂= ŷ× ĉ

reflecting the relation M = Y ×C .

P R O O F . From Lemma 8.1 (pp. 50), we have shown that M and
◦M satisfies the

radially reduced d’Alembert wave equation. Additionally:

1. Theorems 2.1 (pp. 18) and 4.1 (pp. 22) have proven that M and
◦M are solutions

of the Maxwell field equations in vacuum.

2. Theorem 4.1 (pp. 22) demonstrated the quantisation of both the Maxwell equa-

tions and the space itself.

Combining these results, we conclude that the composite field system formed by M
and

◦M constitutes a quantised electromagnetic topological soliton. □

R E M A R K 8.1 The soliton structure defined by the composite field system M∪ ◦M is

preserved under continuous, differentiable transformations within the R(3)SO(3)
symmetry group. These transformations act on the internal rotational configura-

tion without altering the soliton’s identity or interaction characteristics, thereby

establishing its topological stability as defined in Definition 8.3 (pp. 49) .

9 Information and Information Conservation

Having established the general structure of quantised topological electromagnetic

solitons in Theorem 8.1 (pp. 52), we now turn to the interpretive significance of these

configurations: each soliton encodes not merely a field solution, but a fundamental

unit of information structured by the R(3)SO(3) algebra.

D E F I N I T I O N 9.1: Information in the R(3)SO(3) Framework. Information within the

R(3)SO(3) framework is defined as the minimal, topologically stable configuration of

field structure—encoded in quantised solitonic states—that remains invariant under

the transformations of the extended gauge group SO(3×3) and is conserved under

nilpotent field dynamics.

Formally, a unit of information is realised through the triadic soliton structure:

Υ
dsc−−→by Y = SA,

where Y , S and A are defined in equations (17), (16), and (18), respectively.

Information is therefore:

◦ Quantised: bounded to finite, stable field configurations;

◦ Topological: resistant to continuous deformation;
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◦ Conserved: preserved under solitonic interaction (no loss or replication);

◦ Non-local: defined by relational invariants across Y ,C , M ;

◦ Directional: mediated by the structured load land action field −h (⃗r ).

Hence, information in R(3)SO(3) is not abstract, but a concrete, structural invari-

ant embedded within the physical field system—manifesting as distinct, recognisable

solitonic configurations that encode state, interaction history, and future potential

for work.

This definition clarifies how information emerges from and is maintained within

the solitonic architecture. We are now in a position to formalise its conservation

across both local interactions and the global nilpotent Universe–Contra-Universe

framework.

T H E O R E M 9 . 1 : Information Conservation in the Nilpotent Field System.

In the R(3)SO(3) framework, information is structurally defined by the solitonic

triad

Υ
dsc−−→by Y = SA,

where the field vector Y , the solution matrix S, and the axis configuration A are

given in equations (17), (16), and (18), respectively.

This structural definition implies that:

◦ Information is quantised, topologically protected, and relational;

◦ Information is non-locally encoded via the full triadic symmetry Y ,C , M ⊂R9;

◦ Information is conserved under all solitonic transformations permitted by the

field systems M and
◦M.

Let Υ1,Υ2 be two solitons evolving via

M(Υ1,Υ2),
◦M(

◦
Υ1,

◦
Υ2),

then the total structural information is invariant:

ℐ[Υ1]+ℐ[Υ2] =ℐ[Υ′
1]+ℐ[Υ′

2],

where primed quantities denote post-interaction states. This principle generalises to

all mono- or multi-body quantum interactions, Υn −→Υm , such that∑
n
ℐ[Υn] =∑

m
ℐ[Υ′

m]

This principle extends to the entire Universe–Contra-Universe duality:

U + −
U = 0 =⇒ ℐUniverse +ℐContra-Universe = 0.

Thus, the total information content of the nilpotent Universe is a conserved,

structurally balanced invariant embedded in the field algebra of R(3)SO(3) ⊂ SO(3×
3). No information is created, destroyed, or replicated—only transformed in accor-

dance with solitonic interaction symmetries.
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P A R T I I I

Everything in the Universe is of Electromagnetic Origin

To summarise Part I of this paper:

◦ Poincaré once pondered: “Either everything in the universe is of electromagnetic

origin. . . or a mere epiphenomenon, something due to our methods of measure-

ment.”

◦ We established a special orthogonal gauge group R(3)SO(3) ⊂R9, which:

− is an extension of SO(3), inherently preserving all SO(3)-invariant symmetries;

− is inherently singularity-free, and therefore continuous, differentiable, and

integrable;

− provides a classical algebraic framework within which the Maxwell field equa-

tions naturally operate.

◦ The field equation systems

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
,

together with

◦M(ω,φ,
◦
ψ) :=

ß
ω= φ× ◦

ψ

φ ·φ , φ=
◦
ψ×ω
ω ·ω ,

◦
ψ=ω×φ

™
reside within the R(3)SO(3) framework.

◦ The classical Maxwell field equations in vacuum emerge from M (Theorem 2.1

(pp. 18)), and analogously, we identified a set of gyratory Maxwell field equations

from
◦M, which describe field gyrations or vortices.

◦ Using the first expressions in M and
◦M, we obtained a quantised formulation of

the Maxwell equations—Theorem 4.1 (pp. 22)—and demonstrated that space itself

is quantised, thereby establishing a fundamental quantum length lo .

◦ Section 8 (pp. 49) defines wave solutions, topological stability, and topological soli-

tons in the R(3)SO(3) framework. Because the d’Alembert wave equation emerges

from the Maxwell equations, solutions of M and
◦M satisfy wave dynamics and

are thus classified as quantised topological electromagnetic solitons.

◦ Section 6 (pp. 42) establishes the conservation principles.

◦ Definition 8.3 (pp. 49), provides the formal mathematical definition for these

solitons.

We now continue with the demonstration that the photon—along with all its

quantum properties—is described naturally as a quantised topological soliton within

the R(3)SO(3) framework. This is followed by the formulation of fields beyond the

soliton’s domain and an analysis of soliton–soliton interactions.

To facilitate the efficient representation of particles and their transformations

within R(3)SO(3), we introduce the following notational tool:
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D E F I N I T I O N 9.2: Row-by-Row Scaling Operator. Consider a solution matrix S whose

third row is defined as the cross product of the first two rows, that is,

S3 =S1 ×S2.

We define a row-wise scaling operator triad X = 〈a,b, ab〉, where:

• a is a scalar multiplier applied to the first row of S ,

• b is a scalar multiplier applied to the second row of S ,

• ab scales the third row, preserving the cross pruducts

S1 = S2 ×S3

S2 ·S2
, S2 = S3 ×S1

S1 ·S1
, S3 =S1 ×S2

defined in the structure of the field equation system

M(ν,φ,ψ) :=
ß
ν= φ×ψ

φ ·φ , φ= ψ×ν
ν ·ν , ψ= ν×φ

™
,

The action of X on S is denoted as:

X ⋄ S =
 a(⋆ ⋆ ⋆)

b(⋆ ⋆ ⋆)
ab(⋆ ⋆ ⋆)


where S is the original (unscaled) matrix indicated by starred entries.

To apply this operator meaningfully to solitonic solutions, we fix the following nota-

tional convention for the trigonometric components of the solution matrix:

 cøcw søcw −sw

−cs sø + sscøsw cscø + ss søsw sscw

ss sø + cscøsw −sscø + cs søsw cscw

how

where
cs := coshωst ss := sinhωst
cø := cosoωøt sø := sinoωøt

cw := coswωwt sw := sinwωwt
and where


gcd(ωs ,ωø) = 1

gcd(ωs ,ωw ) = 1
gcd(ωø,ωw ) = 1

R E M A R K . To preserve the cross-product structure of the solution matrix, we define

the row-scaling operator as

X = 〈a,b, ab〉 := 〈a,b,∗〉 = 〈a,∗, ab〉 = 〈∗,b, ab〉,
where the starred component is implicitly determined by the requirement that it

equals the product of the other two entries. This construction reflects the cross-

product relations in M, and more generally, expresses the principle that the third

component is always given by the product of the first two.

10 Photons as a Quantised Topological Soliton in R(3)SO(3)

The objective here is to present the solution S to the field equation system, modelling

the photon as a quantised topological electromagnetic soliton.
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D E F I N I T I O N 10.1: Photonic Structure in R(3)SO(3). Within the R(3)SO(3) frame-

work, quantum mechanical properties emerge as rotational transformations. These

are rendered in upright serif font to emphasise their quantum nature and structural

origin.

d Direction, where d ∈ {−1,1}.

h Helicity, where h ∈ {−1,1}.

s Spin, given by the product of helicity and direction: s= hd.

ωq Fundamental spin rate quantum, see Section 4.2 (pp. 26).

n Spin rate aggregator, n ∈N, defining the quantised Einstein–Planck

relation E = −hnωq .

ωs = nhωq Spin rate, determining E = −hωs.

ȯ Orbital rate periodicity, −1 < ȯ < +1 ∈Q, with ratio (ωs :ωø) ∈N.

ωø = ȯωs Orbital rate, providing orbital angular momentum. The sub-

scripted crossed o distinguishes it from the spin quantum ωq .

ẇ Notational rate periodicity, −1 < ẇ < +1 ∈ Q (from German

wanken).

ωw = ẇωs Nutational rate, defining nutational angular momentum, with (ωs :
ωw) ∈N.

{ϑy,ϑz} Degree of polarisation or ellipticity of the magnetic component,

defined by ε= cosϑ, along y and z, respectively.

{ωB ,y ,ωB ,z } Berry phase rates under cyclic evolution in polarisation along y
and z, respectively.

{ϑc,ϑm} Refractivity of the medium. The refractive index is defined by

nr = c/νr , with νr = 1/cosϑi for i = c,m.

R E M A R K . In the above definition ωø and ωw are subharmonics of ωs

Guided by Definition 1.7 the photonic ternary rotations allow us to model a photon

as a particle, incorporating all of the above:

γ dsc−−→by

 νφ
ψ

=

 decϑcemϑm(1 0 0)

ecȯωst emẇωst (0 emϑ′y coshωst emϑz sinhωst )

dec(ȯωst+ϑc)em(ẇωst+ϑm)(0 −emϑz sinhωst emϑ′y coshωst )


x̂ŷ
ẑ



where ϑ′y =ϑy+ tωB ,y includes Berry phase evolution.

All known quantum states of the photon, to the author’s knowledge, are classically

captured within this structural representation.

The Einstein–Planck relation is extended to incorporate photons possessing

both orbital angular momentum (OAM) and nutational angular momentum (NAM)

through the introduction of a complex energy representation, denoted as Ĕ

Ĕ = −hωs(1+cȯ+ww),

◦ where −hωs represents the real energy contribution associated with the intrinsic

spin angular momentum (SAM), and where
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◦ the reactive component −hωs(ȯ+ ẇ) accounts for the energy contributions arising

from the OAM and NAM, respectively, and where

◦ {y, c, w} ∈ R(3)SO(3) are the ternary number operators, see Definition 1.7 (pp. 13).

The effective energy becomes

Eeff =
∣∣Ĕ ∣∣= −hωs

√
1+ ȯ2 +w2,

resulting in a momentum dilation, where the photon’s momentum is given by

p⃗ = ν̂Eeff

c
= ν̂

−hωs
√

1+ ȯ2 + ẇ2

c
,

with ν̂ denoting the unit velocity vector.

This momentum dilation—attributable to the inclusion of OAM and NAM as

reactive energy— is experimentally validated in spontaneous parametric down-

conversion (SPDC).

O B S E R V A T I O N 10.1: Effective Energy Increase in SPDC. In spontaneous parametric

down-conversion (SPDC), a pump photon with frequency ωpump is converted into

two daughter photons with lower frequencies ωs and ωi , such that:

ωpump =ωs +ωi .

However, when the daughter photons acquire opposite orbital angular momentum

(OAM), their individual effective energies increase:∥∥Ĕs
∥∥= −hωs

√
1+ ȯ2,

∥∥Ĕi
∥∥= −hωi

√
1+ ȯ2,

leading to a total effective energy∥∥Ĕs
∥∥+∥∥Ĕi

∥∥ > −h(ωs +ωi ) = Epump.

The momenta of the signal and idler photons are:∥∥ps
∥∥+∥∥pi

∥∥=
∥∥Ĕs

∥∥
c

+
∥∥Ĕi

∥∥
c

>
−h(ωs +ωi )

c
.

This implies that the downconverted photons carry more effective energy—man-

ifested as increased momentum magnitude, evident in the expanded light cone

emitted during the SPDC process—than the pump photon alone. The origin of this

additional effective energy is not yet fully understood. It may be attributed to field-

structural borrowing or redistribution from the local environment, both of which

point toward deeper mechanisms in electrodynamics made possible by a globally

elevated potential—i. e., vacuum energy.

10.1 Wave–Particle Duality

Let us consider a primitive, circularly polarised photon transporting energy E = −hωs :

γ dsc−−→by

 νφ
ψ

=
1 0 0

0 cos(ωst ) sin(ωst )
0 −sin(ωst ) cos(ωst )

x̂ŷ
ẑ

 .

This describes a gyration—or vortex-like motion—propagating along the x-direction.

The structure may be imagined as a disc with area l 2
o and thickness lo , where lo =
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1.666. . .×10−24 metres (see Section 4.1 (pp. 25)). Within this quantised volume, the

magnetic-like and electric-like field components gyrate at a radial angular rate ωs ,

projecting their field influence outward in all directions.

The nilpotent field structure of solitonic matter in the R(3)SO(3) framework is

described by the aleph function, introduced in Section 5.2 (pp. 31). These fields are

non-energetic: they do not carry energy, but instead encode the internal structural

properties of the photon, including polarisation, frequency, and orbital angular

momentum components.

The photon’s wave–particle duality is thus naturally revealed: the particle part,

containing all the photon’s energy, is confined to the gyration within the quantised

volume l 3
o ; the wave part arises from the outward projection of the magnetic and

electric field components, providing the necessary topological structure to stabilise

the energy confinement of the particle component. This structure is illustrated

schematically in Figure 4.

As the photon propagates, the field—or wave—structure may be visualised, in the

case of circular polarisation, as a leading and lagging central helical structure along

the propagation axis, whose radial amplitude decays inversely with longitudinal

distance, following a 1/d law. It is important to emphasise that this helical structure

describes the field amplitude associated with a distant spatially quantised element

l 3
o , distinct from the particle’s own core volume, where the degree of field presence

within that element modulates its local transportivity (see Section 14.1 (pp. 78)).

Surrounding the central helical structure, additional helical field structures are

radially distributed around the propagation axis, with amplitudes decaying as 1/r
with radial distance. These field structures extend indefinitely: although the field

strength diminishes asymptotically, it never truly vanishes. At any off-axis point, the

local field strength is given by
p

1/r 2 +1/d 2, where the phasing is governed by the

longitudinal distance d .

φ

ψ photon propagation

Figure 4: Schematic representation of the particle–wave duality of a photon in the
R(3)SO(3) framework. The magnetic-like and electric-like field components gyrate
within a quantised disc, projecting helical field structures with amplitudes decaying
as 1/d and 1/r from the propagation axis. These nilpotent, non-energetic fields
extend to infinity, signalling the photon’s internal structural properties across space.
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Being non-energetic and defined by the aleph function, these fields instanta-

neously signal the photon’s approach, departure, and internal structural state—such

as polarisation, frequency, and orbital angular momentum—to any location in space.

10.2 Entanglement

Section 7 (pp. 46) addresses the foundational aspects of quantum entanglement. In

addition to that discussion, and having analysed the properties of photons produced

via spontaneous parametric down-conversion (SPDC), it is noted that the signal and

idler photon pair are entangled not only in their polarisation states, but also through

their orbital angular momentum phasing. The conservation of total orbital angular

momentum ensures that their combined OAM remains zero.

The birefringent medium acts effectively as a recoil-free system. Consequently,

SPDC interactions proceed without environmental back-action, analogous to the

Mössbauer effect in solid-state physics. This requires symmetry between the signal

and idler photons in order to preserve nilpotency.

11 Particles in R(3)SO(3)

Let’s summarise: With Theorem 8.1 (pp. 52) we developed the notation that a soliton

is described Υ
dsc−−→by Y =SA The components of the expression Y =SA are: the

EM-Action Field Triad Y that defines dynamic relation between the magnetic and

electric components over velocity or gyration; a solution matrix S satisfying the field

equation system M and
◦M; and the axes A; all residing in R(3)SO(3).

EM-action field triads We now define the EM-action field triads. There are four

fundamental variants:

→
Y :=

 νφ
ψ

 ,
◦
Y :=

ωφ
◦
ψ

 ,
⇒
Y :=

 νφ̄
ψ̄

 ,
−◦
Y :=

ωφ̄
−◦
ψ


The pairs

→
Y and

◦
Y represent particles satisfying Maxwell’s equations for linear

motion (over set arrow) and gyrational (vortical) dynamics (overset circle), re-

spectively. The barred versions represent their conjugate pairs, corresponding to

opposite polarity due to the reversal of the magnetic component from source to

sink.

The Axes Next we define the reference axes satisfying Theorem 8.1 (pp. 52):

A :=
x̂ŷ
ẑ

 :=
ŷx

ŷy

ŷz

 , A‡ :=
 ŷx

ĉy
m̂z

 .

It is noted that the gyration and velocity vectors ω and ν in both cases are

defined within the real space Y . The spaces C and M serve as complexification

spaces for ν and ω, allowing their coefficients to be complex. For example, the

observed real velocity of a photon appears slowed in a medium: νx = ecϑc,

although its effective velocity remains constant. The magnetic component is
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primarily defined in Y and C ; it may be doubly complexified by M , and vice

versa, as in:

φx,c= ecϑcemϑmx̂ + emϑmeyϑy ĉx.

The cross product ν×φ places the electric component primarily into the spaces

Y and M .

The Solution Matrix We define the following quantum numbers, which have their

parallels in the description of photon quantum properties.

d Direction, d ∈ {−1,1}.

h Helicity, (spin rate direction) h ∈ {−1,1}.

o Orbital rate direction, o ∈ {−1,1}.

p Polarity of magnetic component, p ∈ {−1,1}.

w Nutational rate direction, w ∈ {−1,1}.

s Spin, the product of direction and helicity, s= dh.

See Remark 1 (pp. 40) for further clarification on the quantum number p, which

defines the polarity of the magnetic component in terms of its role as a source or

sink of quantised flux.

We now consider the solution matrix S satisfying M and
◦M:

◦
S§:=

 ( cøcw søcw −sw )
p(−cs sø + sscøsw cscø + ss søsw sscw )
p( ss sø + cscøsw −sscø + cs søsw cscw )

how

(19)

where


cs := coshωst ss := sinhωst
cø := cosoωøt sø := sinoωøt

cw := coswωwt sw := sinwωwt
and where


gcd(ωs ,ωø) = 1

gcd(ωs ,ωw ) = 1
gcd(ωø,ωw ) = 1

→
S§:=

 d(1 0 0)
peĉywωw em̂zoωø(0 coshωst sinhωst )

pdeĉywωw em̂zoωø(0 −sinhωst coshωst )

 (20)

The matrix
→
S§ is a rotational transformation of

◦
S§ allowed within R(3)SO(3).

The three gyration rates ωs ,ωø,ωw , along with their angular directions h,o,w,

respectively, are preserved—indicating conservation of information.

While
◦
S§ describes a stationary gyration,

→
S§ describes a propagating gyration at

the speed of light, i.e., a gamma ray. This rotational transformation is notationally

defined as:

S(
→
θ) = cos

→
θ

◦
S§+ i sin

→
θ

→
S§, δ≤ →

θ ≤π/2 −δ
For δ= 0, information is lost, reinforcing the notion discussed in the context of

the neutrino rest mass.

The solution matrices
◦
S§ and

→
S§ reflect the gyration rate vectors

◦
Ω= hωs x̂ +wωw ŷ +oωøẑ ,

→
Ω= eĉywωw em̂zoωøhωs x̂
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11.1 Structural and Energetic Transformations of a Fundamental Soliton

We are now in a position to define a generic fundamental soliton ℱ, whose energetic

state is determined by four transformational rotation angles, grouped into two pairs.

We designate the most elementary solitonic excitation in R(3)SO(3) as a ℱ.

The first pair, denoted
◦
θ and

→
θ, corresponds to structural rotations that do not

alter the energy content of the soliton. The second pair,
◦
β and

→
β, describes trans-

formations involving energetic interactions—such as those occurring in particle

accelerators—which change the soliton’s internal energy.

An illustrative example of an energy-neutral structural transformation is elec-

tron–positron annihilation. Two solitons—initially described by
◦
Y = ◦

S§A—are trans-

formed into gamma rays described by
→
Y = →

S§A. This interaction involves two key

effects: (i) the conversion of gyration dynamics, denoted ω in
◦
Y , into displacement

dynamics ν in
→
Y ; and (ii) a transformation of the solution matrix

◦
S§ into its com-

plexified counterpart
→
S§, representing a rotational restructuring consistent with the

field equations.

The two structural rotation angles associated with energy-neutral transitions are

defined as follows:

◦
θ A structural rotation complexifying the gyration rate vector:

ω̆ := ec
◦
θcem

◦
θmω,

◦
θ =
» ◦
θ2
c+

◦
θ2
m.

Notationally,

ℱ(
◦
θ) = ◦

Υ〈 ◦
θ〉

dsc−−→by
◦
Y〈 ◦

θ〉 = ◦
S§A

→
θ A structural rotation converting stationary gyration into translational gyration:

ω−→ cos
→
θω+ i sin

→
θν

Notationally,

ℱ(
→
θ) = cos

→
θ

◦
Υ+ i sin

→
θ

→
Υ

dsc−−→by cos
→
θ
Ä ◦
Y = ◦

S§A
ä
+ i sin

→
θ
Ä→
Y = →

S§A
ä

Here,
◦
Υ denotes a gyration structure, and

→
Υ a photonic translation structure.

These differ by their solution matrices
◦
S§ and

→
S§, as defined in equations (19)

and (20). The combination ℱ(
◦
θ,

→
θ) is possible but beyond the scope of this

introductory article.

Energetic transformations—such as those occurring in soliton accelerators—are

described by the two rotation angles
◦
β and

→
β:

◦
β A structural rotation coupled with an increase in energy. This is represented by a

rotation of the axis:

A〈 ◦
β〉 = cos

◦
βA+ i sin

◦
βA‡
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Hence,

ℱ(
◦
β) = cos

◦
β

◦
Υ+ i sin

◦
β

◦
Υ‡

dsc−−→by cos
◦
β
Ä ◦
Y = ◦

S§A
ä
+ i sin

◦
β
Ä ◦
Y = ◦

S§A‡
ä

with the energy relation:

Ĕ = ◦
E + i

sin
◦
β

cos
◦
β

◦
E ‡

where
◦

E is the rest energy of the unmodified ℱ. The soliton remains stationary;

only the internal gyration rate increases:

Eeff =
Ç

1+ sin2 ◦
β

cos2
◦
β

å
◦

E ,

requiring scaling of all gyration rates:

◦
Ω〈 ◦

β〉 =
Ç

1+ sin2 ◦
β

cos2
◦
β

å(
hωs x̂ +wωw ŷ +oωøẑ

)
.

→
β A structural rotation coupled with both an energy increase and directional motion.

The axis transformation is identical:

A〈→
β〉 = cos

→
βA+ i sin

→
βA‡

with additional translational transformation:

ω−→ cos
→
βω+ i sin

→
βν.

Notationally,

ℱ(
→
β) = cos

→
β

◦
Υ+ i sin

→
β

→
Υ‡

dsc−−→by cos
→
β
Ä ◦
Y = ◦

S§A
ä
+ i sin

→
β
Ä→
Y = →

S§A‡
ä

with energy given by:

Ĕ = ◦
E + i

sin
→
β

cos
→
β

◦
E ‡

and corresponding effective energy:

Eeff =
Ç

1+ sin2 →
β

cos2 →
β

å
◦

E .

The gyration vector becomes:

→
Ω〈→

β〉 =
Ç

1+ sin2 →
β

cos2 →
β

åÅ
cos

→
β
(
hωs x̂ +wωw ŷ +oωøẑ

)
+ i sin

→
β
(

eĉywωw em̂zoωøhωs x̂
)ã

.

R E M A R K (On the Use of the Imaginary Operator). The introduction of the complex

operator i within the R(3)SO(3) framework does not imply an extension of the

space from R9 to Cn . Rather, i functions as a symbolic representation of structural

orthogonality between solitonic transformation modes—such as gyration versus
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translation, or inertial versus energised configurations. The use of i symbolically

represents a collection of internal orthogonal rotations that preserve nilpotency,

maintain topological stability, and distinguish dynamically separable internal states

without departing from the real-valued foundation of the R(3)SO(3) framework.

11.2 The Load, Fervour, and Vigour

With Axiom 5.2 (pp. 38), Coulomb charge was separated from the quantum load,

which is defined as a structured quantity. Definition 5.6 (pp. 39) introduces the load

as a vectorial element l∈R3 ⊂ R(3)SO(3), capable of generating both positive and

negative charges. It is defined by

l:= ê
oc(π/2+δ)+wmδ
y ,

where o and w are the orbital and nutational rate direction quantum numbers,

respectively, previously defined. Combined with the spin s = dh, defined as the

product of direction and helicity, this yields eight distinct charge flavours, consistent

with the gyrational dynamics of solitonic particles:

positive


s= 1 s=−1

o= 1 w= 1 l̂+ l̂
+

o= 1 w=−1 l̄̂+ l̄̂
+

negative


s= 1 s=−1

o=−1 w= 1 l̂– l̂
–

o=−1 w=−1 l̄̂– l̄̂
–

The physical charge is generated through a structured load–magnetic field rela-

tion:

φl(⃗r ) :=
−h (⃗r )

l
.

To preserve the full internal symmetry of R(3)SO(3), two further vectorial charges

are defined:

1. The fervour, f∈R3 ⊂ R(3)SO(3), defined by

f:= ê
om(π/2+δ)+wyδ
c ,

with its associated structured fervour–magnetic field relation:

φf(⃗r ) :=
−h (⃗r )

f
.

2. The vigour, v∈R3 ⊂ R(3)SO(3), defined by

v:= ê
oy(π/2+δ)+wcδ
m ,

with an analogous structured vigour–magnetic field relation:

φv(⃗r ) :=
−h (⃗r )

v
.
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This balanced triad of charges expresses a deeper structural symmetry intrinsic

to the nilpotent framework. Specifically, the sum over all eight subcomponents of

each charge satisfies the nilpotent condition:∑
l+∑

f+∑
v= 0.

This internal symmetry of three charge types gives rise to the binding mechanism,

which distinguishes solitary excitations (ℱ) from composite configurations.

Let the load be identified with electric charge and the corresponding electromag-

netic force, which is well understood in contemporary physics. However, the roles

of the fervour and vigour charges remain unrecognised in current models. Within

the present framework, these two additional structured charges are not merely theo-

retical extensions but necessary components of a deeper nilpotent symmetry. Their

physical manifestations are yet to be determined, but their symmetry with electric

charge suggests that they govern fundamental interactions of a qualitatively dif-

ferent kind—potentially underpinning phenomena not presently accounted for in

established theory.

11.3 Structural Conjugates

A fundamental soliton ℱ is defined over two distinct sets of axes:

A :=
x̂ŷ
ẑ

 :=
ŷx

ŷy

ŷz

 , A‡ :=
 ŷx

ĉy
m̂z

 .

The soliton is generally expressed as:

ℱ(α) = cosα
◦
Υ+ i sinα

→
Υ‡

dsc−−→by cosα
( ◦
Y = ◦

SA
)+ i sinα

(→
Y = →

SA‡),

where
◦
S and

→
S are the structural solution matrices defined over their respective axis

sets. We now define its structural counterpart under axis exchange:

D E F I N I T I O N 11.1: Structural Conjugates. Given the nilpotent symmetry of the R(3)SO(3)
framework, the structural conjugate of a solitonic excitation ℱ is defined as a soliton

𝒫 with the same internal structure matrix S , but evaluated over the conjugate axis

set A↔A‡, yielding

𝒫(α) = cosα
◦
Υ‡ + i sinα

→
Υ

dsc−−→by cosα
( ◦
Y = ◦

SA‡)+ i sinα
(→
Y = →

SA
)

,

which reflects an internal axial transformation, preserving nilpotency under struc-

tural duality.

The fundamental structural conjugates 𝒫 are referred to as potentiators. Each acts

as a nonlocal structural partner to the fundamental soliton ℱ, transferring energy

via internal field transformation rather than direct spatial interaction. Within this

framework, the excitation ℱ gains or loses energy, while its structural conjugate

(65)



TOWARDS A QUANTUM UNIFIED FIELD THE ORY A.L. Vrba

𝒫 undergoes a corresponding loss or gain, in full consistency with the nilpotent

conservation principle:

ℱ⇐⇒𝒫= 0.

11.4 The Electric Phenomenon

With Axiom 5.2 (pp. 38), the Coulomb charge was separated from the quantum

load, and the proposed experiment outlined in Appendix 7 (pp. 97) is expected to

confirm this. We can now identify the charge carrier in electric conducting circuits

as the Voltron—a photon-like particle, representing the structural conjugate of the

photon. While photons exist and propagate in vacuum, the voltron requires atomic

structures to manifest; conductive media inherently host latent voltron populations.

Thus, being confined to matter, the voltron serves as the medium counterpart of the

photon in vacuum.

The Voltron, denoted by Λ, is itself a topological soliton and functions as the

mediator of power transport in conductive circuits, akin to the photon in vacuum.

Whereas a photon is described by γ dsc−−→by Y =SA, a voltron is represented as Λ dsc−−→by
YgSA‡. Specifically,

Λ+ =
 ν

φg

ψg

 d(1 0 0)
(0 cs ss)

d (0 −ss cs)

h
 ŷx

ĉy
m̂z

 Λ– =
 ν

φ̄g

ψ̄g

d̄(1 0 0)
(0 cs ss)

d̄(0 −ss cs)

 h̄
 ŷx

ĉy
m̂z


The energy per voltron transferred is governed by the Planck–Einstein relation

E = −hω. Accordingly, the electric potential is directly proportional to the radial

frequency. In a conducting wire, electric current flows toward the load in both

conductors; that is, Λ+ and Λ– share the same velocity vector direction along parallel

wires. The resulting magnetic field directions, however, differ due to the conjugate

pairing of φg and φ̄g , which accounts for the opposing polarities of the voltrons.

When charging a capacitor, voltrons undergo a transition into Fluxons, denotedΘ

and described as Θ dsc−−→by
◦
YgSA‡. These fluxon solitons project and absorb structured

electric flux, defining the field between capacitor plates:

Θ+ =
 ω
φg

ψg

 (0 cs ss)
d (0 −ss cs)
d(1 0 0)

h
 ŷx

ĉy
m̂z

 Θ– =
 ω
φ̄g

ψ̄g

 (0 cs ss)
d̄ (0 −ss cs)
d̄(1 0 0)

 h̄
 ŷx

ĉy
m̂z


For magnetic configurations:

ΘN =
 ω
φg

ψg

d(0 −ss cs)
d(1 0 0)

(0 cs ss)

h
 ŷx

ĉy
m̂z

 ΘS =
 ω
φ̄g

ψ̄g

d̄(0 −ss cs)
d̄(1 0 0)

(0 cs ss)

 h̄
 ŷx

ĉy
m̂z


While only representative configurations are shown, these definitions must be

extended to incorporate the full symmetry group of R(3)SO(3), as was established in

the characterisation of the photon γ, and the fundamental particles ℱ and 𝒫.

At this point, all required elements are in place to describe the electromagnetic

universe as a self-consistent, symmetrical, and nilpotent structure embedded in the

extraordinary orthogonal gauge group R(3)SO(3).
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11.5 The 𝓕 Interaction with the Field Θ+– Θ–

Consider a pair of fluxons immobilised on opposing capacitor plates, thereby estab-

lishing an electric potential field V
(
Θ+,Θ–

)
. By definition, the potential difference

between two positions s1 and s2 is obtained by integrating the field gradient:

V
(

{Θ+,Θ–}
)= ∫ s2

s1

∇{Θ+,Θ–}ds = skx̂ ,

where ∇{Θ+,Θ–} denotes the potential field, and k ∝−hω is proportional to the en-

ergy carried by the fluxon dual {Θ+,Θ–}. A fundamental charged soliton, represented

by a ℱ, responds dynamically to this potential configuration.

From Theorem 4.1 (pp. 22), Equation 15 (pp. 25) gives:

n−h = ϵ0
φ×ψ
φ ·φ ,

and the interaction of soliton one with the potential field of soliton two takes the

form:

p = ϵ0
φ1 ×∇ψ2

φ1 ·φ2
,

where ∇ψ2 denotes an electric potential field (flux divided by length), and the iden-

tity (n−h)/r = p is recognised as the solitonic momentum.

Therefore, the field interaction ℱ field⇐==⇒∇{Θ+,Θ–}—where
field⇐==⇒ denotes a nilpo-

tent soliton–soliton interaction mediated by the soliton structure of one soliton

and the field structure of the other within the R(3)SO(3) framework—yields the

momentum exchange relation:

p⃗ = ϵ0
φ×∇ψg

φ ·φg
,

where φ, defined in {x̂ , ŷ , ẑ }, is the magnetic component of the ℱ, and ∇ψg , defined

in {x̂ , ĉy, m̂z}, is the electric potential associated with the fluxon dual {Θ+,Θ–}.

Since
∥∥∇ψg

∥∥
x ≈ 0, and the y and z components of φ and ∇ψg are always or-

thogonal, their cross product produces a time-independent vector along the x̂ axis.

Consequently, the soliton ℱ is accelerated along the x̂ direction. The direction of

motion depends on the polarities of the interacting solitons. In this interaction, the

ℱ gains kinetic energy, while the fluxon dual loses potential energy. Crucially, this

energy exchange is mediated at a distance because the fields themselves remain

non-energetic within the R(3)SO(3) formalism.

The force acting on the soliton is given by the time derivative of momentum:

F⃗ = dp⃗

dt
.

To evaluate the complete effect on the soliton ℱ and the fluxon dual {Θ+,Θ–}, one

must examine the temporal evolution of this soliton–field interaction within the

structured field framework.

T H E O R E M 1 1 . 1 : Relativistic Energy and Inertial Mass from Solitonic Structure.

Let a soliton ℱ (
→
β) be a soliton rest state composed

ℱ(
→
β) = cos

→
β

◦
Υ+ i sin

→
β

→
Υ‡
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dsc−−→by cos
→
β
Ä ◦
Y = ◦

S§A
ä
+ i sin

→
β
Ä→
Y = →

S§A‡
ä →

β≪ 1.

Then, under interaction with an fluxon dual field {Θ+,Θ–}} the soliton ℱ acquires

momentum in the electric potential field spanning between Θ+ and Θ–, given by

p⃗ = ϵφ×∇ψg

φ ·φg

and its energised structural energy is expressed as the complexified quantity (see

Axiom 5.1 (pp. 37))

Ĕ = ◦
E + i

sin
→
β

cos
→
β

◦
E ‡

where
◦

E would be the resting state energy and
◦

E ‡ the energy to maintain the mo-

mentum p , and where ν= c sin
→
β is the effective translational velocity attained under

the interaction.

The measurable energy, or effective energy, of ℱ becomes

Eℱ,eff =
◦

Eℱ

Ç
1+ sin2 →

β

cos2 →
β

å
= ◦

Eℱ

 
1+ ν2

c2 −ν2 .

By differentiating with respect to velocity we obtain the dynamic change in energy

in the R(3)SO(3) framework, which we compare to the temporal change in energy

using classical Newtonian methods, providing us the two equations

dEeff,ℱ

dν
= ◦

Eℱ
cν

(c2 −ν2)3/2
and

dENewton

dt
= mi

dν

dt
ν,

as dEeff,ℱ = dENewton above give the expression for inertial mass

mi = ◦
Eℱ

c

(c2 −ν2)3/2
.

In the limit ν= 0 the structural energy yields the inertial mass equivalence:
◦

Eℱ = mc2.

Thus, the energy of the boosted soliton ℱ(
→
β) is given by

Eℱ(
→
β)

= mc2»
1− ν2/c2

.

This derivation emerges naturally from the nilpotent soliton structure defined

by M and
◦M in the R(3)SO(3) framework, requiring no external postulates. The

derivation also elucidates the origin of momentum and grounds Newton’s laws within

the algebraic and energetic coherence of structured soliton interactions.

Importantly, the inequality

◦
E + ◦

E ‡ >

»
◦

E 2 + ◦
E ‡2

indicates that the energy increase associated with solitonic acceleration necessarily

results in a residual output—typically in the form of emitted radiation or other

secondary excitations.
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R E M A R K . Any increase in the energy of Eℱ, including radiative losses, is instan-

taneously balanced by an equal energy decrease in the fluxon dual {Θ+,Θ–}. This

energy transfer is mediated non-locally through the nilpotent structure of the Uni-

verse, as encoded in the R(3)SO(3) framework, which ensures conservation without

recourse to field energy or propagation delay.

As ℱ is a quantised soliton, this energy increase must arise via enhancement of

its internal field dynamics—specifically, by scaling the gyration rates. These rates

transform as:
◦
Ωℱ =ω′

s ŷx+ω′
ø ŷy+ω′

w ŷz,
→
Ωℱ =ω′

s ecω
′
øt emω′w t ŷx,

with the boosted frequencies:

ω′
s = γωs , ω′

ø = γωø, ω′
w = γωw , where γ= 1p

1−ν2/c2
.

N O T E . This derivation reproduces the results of Einstein’s special relativity— specif-

ically, Lorentzian time dilation and relativistic energy scaling—but within the topo-

logically consistent, quantised field framework of the nilpotent universe R(3)SO(3).

Unlike the axiomatic derivation from plane-wave solutions to the d’Alembert equa-

tion, the present approach grounds relativistic effects in the soliton–field dynamics

of quantised, rotationally invariant field configurations. It provides not only a mathe-

matical derivation of E = mc2, but also a first-principles identification of momentum

and a soliton-based interpretation of Newton’s first law.

C O R O L L A R Y 1 1 . 1 . 1 : Mass as an Emergent Property of R(3)SO(3).

Within the nilpotent field structure of R(3)SO(3), inertial mass is not a fundamental

input but an emergent quantity derived from the soliton’s internal field configuration

and its structural energy expression.

From the structural energy formulation in Axiom 5.1 (pp. 37)and Theorem 11.1

(pp. 67), we find that
◦

Eℱ = mc2,

where
◦

Eℱ is the soliton’s intrinsic (gyratory) energy. Thus, the rest mass m is identi-

fied directly with the energy stored in the soliton’s topological configuration.

Consequently, mass in R(3)SO(3) arises from the quantised, nilpotent field struc-

ture of solitons themselves, without reference to external fields such as the Higgs

mechanism. It is a property of stability, rotation, and field configuration, governed

entirely by the structural field equations M and
◦M in the reduced configuration

space R9.

This corollary recasts mass not as an independent entity but as the energetic

expression of a soliton’s topological identity, making it inherently compatible with

conservation laws, quantisation, and nilpotency.

R E M A R K 11.1: Electric Charge as an Emergent Quantity. Axiom 4.1 (pp. 21) equates

electromagnetic action with mechanical action, thereby aligning the momentum-

transfer framework of electrodynamics with the inertial structure of matter. However,
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since mechanical action itself emerges from the solitonic dynamics of the R(3)SO(3)
framework, it follows that the elementary electric charge e must also be understood

as an emergent—not fundamental—quantity.

This interpretation is fully consistent with Axiom 5.2 (pp. 38), which distinguishes

between the scalar charge e and the structured quantities l,f, and v, each mediating

distinct interactions. Within this duality, e represents a measurable scalar effect

arising from a deeper geometric origin: the triad of symmetrical charge structures.

Consequently, both gravitational (Newtonian) and electric (Coulombic) forces

are not independent primitives, but rather manifestations of a unified, emergent

phenomenon governed by the solitonic field structure and conserved topological

interactions within R(3)SO(3).

R E M A R K 11.2: Potential Wells. In Definition 5.2 (pp. 34), hollowed solitons were in-

troduced; structures that generate a confined potential region within their interior.

Let A denote such a hollowed soliton, and let B be a second soliton captured within

the potential well defined by A.

If B possesses kinetic energy, it will undergo oscillatory motion within the poten-

tial well of A, alternating between phases of acceleration and deceleration. During

acceleration phases, radiation is emitted; however, this radiative energy loss is not

recuperated during deceleration. As a consequence, energy is irreversibly transferred

to the surrounding field environment.

Over successive cycles, this loss reduces the kinetic energy of B , ultimately bring-

ing it to rest at the minimum of the potential well. The system thus evolves toward

a lower-energy configuration, consistent with entropic decay and external energy

dissipation.

11.6 The Electron and Positron

We adopt the notation for a fundamental soliton ℱ described solely by its charge—for

example, ℱ+
l

:= l+—consistent with the definitions of load, fervour, and vigour in

Section 11.2 (pp. 64). A compounded particle consisting of four fundamental solitons

is written as

particle = ((
l̂–, f̂–, l̂–, f̂+)) ,

resulting in a net negative charge from the pair (l̂–, l̄̂–), while the fervour charges

cancel. The particle possesses net up-spin momentum, as well as net orbital and

nutational angular momenta. All components of the particle share the same solution

matrix S .

The resultant solitonic structure—comprising n2, here 22, fundamental soli-

tons—is whole and not hollow; see Section 5 (pp. 28).

The positive and negative charged fervours differ by conjugate magnetic vectors

defined by the quantum number p; see the item “Solution Matrix” in Section 11

(pp. 60).

The forces acting on the individual solitons arise from both Coulomb interactions

and quantum forces generated by the four-body coupling. Part IV shows that both

the gravitational and Coulomb forces emerge as residual effects in the R(3)SO(3)
framework. For fundamental solitons assembling into compound structures, quan-
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tum forces dominate and overcome the Coulomb repulsion. Section 11.5 (pp. 67)

derives the force between two solitons induced by quantum field interaction as

F⃗ = dp⃗

dt
,

where

p⃗ = ϵ0
φ1 ×∇ψ2

φ1 ·φ2
.

By Definition 1.9 (pp. 15), cross products in the ternary system R(3)SO(3) pre-

serve length. Hence, the four-body interactions within the compound particle((
l̂–, f̂–, l̂–, f̂+

))
produce forces that overwhelm the Coulomb repulsion between

the pair (l̂–, l̄̂–).

The particle described above is identified as the electron in the R(3)SO(3) frame-

work:

e
–̂ = ((

l̂–, f̂–, l̂–, f̂+)) .

The internal structure of the electron, defined in this manner, is well-posed: it is a

resonance structure characterised by the eigenvalues¶
ω(e)

s , ω(e)
ø , ω(e)

w

©
,

corresponding respectively to intrinsic spin, orbital, and nutational rates, which

translate to spin angular momentum (SAM), orbital angular momentum (OAM), and

nutational angular momentum (NAM).

These eigenvalues define the topologically quantised internal configuration of

the electron and determine its rest energy via

◦
Ee = −h

…Ä
ω(e)

s

ä2 +
Ä
ω(e)

ø

ä2 +
Ä
ω(e)

w

ä2
.

This eigenstructure encodes all observable quantum properties of the electron—including

spin, magnetic moment, and charge polarity—and provides a geometric origin for

rest mass through solitonic resonance. The electron thus emerges as the lowest-

energy soliton compound, whose excitation modes satisfy the quantised field equa-

tions M and
◦M within the R(3)SO(3) framework.

Analogously, the positron is defined as the compound

e

+̂
= ((

l̂
+

, f̂
+

, l̂
+

, f̂
–))

,

featuring down-spin. A neutral compound configuration is also definable:

e◦ = ((
l̂

+
, f̂

+
, l̂

–
, f̂

–))
.

In this construction, each component l̂
–

represents a structured solitonic state

bearing half the total Coulomb charge, such that their combination yields the ob-

served elementary charge of the electron or positron.

11.7 The Proton and Neutron

Within the R(3)SO(3) framework, the proton—like the electron—is realised as a

structured compound. However, unlike the electron’s quadruple composition, the

proton is defined as a hexadecuple (sixteenfold) solitonic structure. This makes it a
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“whole” configuration—topologically closed and non-hollow—whose eigenstructure

determines its rest mass:

p

+̂
=



((
l̂

+
, v̂

+
, l̂

+
, v̂

–))((
l̂

+
, v̂

+
, l̂

+
, v̂

–))((
l̂

–
, f̂

–
, l̂

–
, f̂

+))((
l̂

+
, v̂

+
, l̂

–
, f̂

–))



Here, the first row contributes the net positive charge, while the remaining three rows

are collectively neutral. The particle is stabilised by the predominance of vigour v,

which acts as a catalyst enabling larger-scale assembly. Notably, vigour components

outnumber fervour components by five to three. In a hydrogenic universe, this

structure ensures that the combined charge types satisfy the nilpotent condition:∑
l+∑

f+∑
v= 0,

since the corresponding electrons are bound using fervour.

The neutron appears as a neutral variant of this configuration:

p◦ =



((
l̂

+
, v̂

+
, l̂

–
, v̂

–))((
l̂

+
, v̂

+
, l̂

+
, v̂

–))((
l̂

–
, f̂

–
, l̂

–
, f̂

+))((
l̂

+
, v̂

+
, l̂

–
, f̂

–))



in which the first row’s charge is neutralised.

The interaction of a neutron p◦ with a neutral electron e◦ gives rise to a nilpotent,

energetically balanced transformation:ß
p◦ =
ïï((

l̂
+

, v̂
+

, l̂
–
, v̂

–))
. . .

òò™
⊕{

e◦ = ((
l̂

+
, f̂

+
, l̂

–
, f̂

–))}
←→

ß
p+ =
ïï((

l̂
+

, v̂
+

, l̂
+

, v̂
–))

. . .

òò™
+{

e

–̂
= ((

l̂
–
, f̂

–
, l̂

–
, f̂

+))}+2ν

This yields a proton p+, an electron e–, and two neutrinos 2ν, thereby ensuring

conservation of energy and nilpotent field symmetry.

Why two neutrinos? The first neutrino carries away excess binding energy re-

leased during the neutron-to-proton transition; this energy is conveyed via vigour

and is structurally analogous to a photon, which transports energy via load. The

second neutrino carries the binding energy difference between the neutral electron

e◦ and its charged counterpart e–; this energy is mediated via fervour.

Consequently, the neutron’s half-life is not solely determined by intrinsic instabil-

ity but is modulated by the availability—i.e., the local density—of neutral electrons

e◦, which act as mediators of the decay process.

R E M A R K 11.3: Photonic Equivalence and Neutrino Interactions. Within the triadic

charge structure of the R(3)SO(3) framework, a photon is understood as a load-

mediated excitation that interacts via electromagnetic channels. Analogously, neutri-

nos emerge as fervour- or vigour-mediated excitations, depending on the structural

origin of the energy transfer. Each of the three charge types thus possesses its own

vector-borne energy carrier: photons (load), fervour-neutrinos, and vigour-neutrinos.
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These entities differ fundamentally in their interaction cross sections. Photons

exhibit relatively large cross sections in matter, energising electrons within atomic

shells and thereby facilitating transitions between discrete energy levels. This inter-

action is broad and probabilistically robust—comparable to a dart reliably striking

anywhere on a dartboard.

Neutrinos, by contrast, interact only through rare, highly constrained events—akin

to a dart striking the bull’s eye. These interactions occur only when the solitonic

structure of a neutrino precisely overlaps with that of a nuclear target. Consequently,

neutrinos are not directly observable in the same manner as photons; their presence

is inferred through secondary signatures in highly controlled detection environments.

As such, fervour and vigour interactions lie beyond the reach of conventional

electromagnetic instrumentation and require careful interpretation of anomalous

nuclear events to be inferred.

This framework maintains a complete charge and structural balance throughout

the interaction, with no need for fractional charge postulates or internal recom-

bination mechanisms. The resulting composite particles emerge naturally from

the soliton–glueonic architecture, setting the stage for the nuclear-scale packing

principles explored in the following section.

12 Atomic Nuclear Packing

We introduce the notation for describing compound solitonic structures involving

four components:

〈3,1〉 := ((
ℱ+,ℱ+,ℱ–,ℱ+)) ,

where the ordered pair 〈p,n〉 counts the number of positive and negative Coulomb

half-charges, respectively. In this representation, proton–neutron pairs emerge as

balanced configurations of structured charges and their corresponding glueonic

counterparts.

While the packing of electrons into atomic orbitals—classified by the familiar

subshells {s, p, d , f }—is well established, we extend this concept to a nuclear ana-

logue. We define nuclear shells, distinct from electronic ones, but retaining analogous

terminology. These nuclear shells are indexed n = 1, . . . ,8, with each shell containing

the subshells {s, p, d , f , g }, whose respective capacities (in proton–neutron pairs)

are:

{s, p, d , f , g } = {1, 3, 5, 7, 11},

corresponding to a total of 4× {1, 3, 5, 7, 11} Coulomb half-charges per subshell, due

to each proton–neutron pair contributing four such charges.

For example, the s-subshell supports four half-charges, accommodating either

two electrons or one proton. The p-subshell holds twelve half-charges, sufficient

for three protons or six electrons. Accordingly, nuclear shell packing follows a gener-

alised pattern:

(s1), (s2, p2), (s3, p3, d3), (s4, p4, d4, f4), (s5, p5, d5, f5, g5),
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culminating in a total of 57 protons and neutrons. This configuration corresponds to

either the iron isotope 57
26Fe or the cobalt isotope 57

27Co, at which point the fifth shell

is complete.

The half-charge configuration within each nuclear sub-shell follows from the

solitonic pairing structure defined earlier. Each sub-shell accommodates Coulomb

half-charges arranged in quantised pairings, represented using the notation 〈p,n〉, ,

where the ordered pair 〈p,n〉 denotes the positive and negative half-charge contri-

butions, respectively. The charge configurations for each sub-shell are summarised

as:

s 7→ 〈1,3〉, 〈2,2〉, 〈3,1〉 yields net charges −1, 0, +1,

p 7→ 〈3,1〉, 〈5,3〉, {〈7,5〉, 〈9,3〉} yields net charges 1, 1, {1, 3},

d 7→ p,
{〈9,7〉, 〈11,5〉},

{〈11,9〉, 〈13,7〉},

f 7→ d ,
{〈13,11〉, 〈15,9〉},

{〈15,13〉, 〈17,11〉},

g 7→ f ,
{〈17,15〉, 〈19,13〉},

{〈19,17〉, 〈21,15〉},
{〈21,19〉, 〈23,17〉},

{〈23,21〉, 〈25,19〉}.

Each sub-shell thus defines a closed combinatorial set of half-charge couplings

that contribute to the emergent structure of nuclear matter. This packing preserves

nilpotency and charge balance within the nuclear compound, and it echoes the

duality observed in electron shells—now reinterpreted through the glueonic soliton

formalism introduced in the R(3)SO(3) framework.

The sixth nuclear shell marks a transition to higher-energy packing, characterised

by a doubling of the subshell capacities:

{s6, p6, d6, f6, g6} = 8× {1, 3, 5, 7, 11}.

This shell concludes with the cadmium isotope 111
48Cd. The seventh shell undergoes

a further doubling of capacity:

{s7, p7, d7, f7, g7} = 16× {1, 3, 5, 7, 11},

terminating with the radon isotope 219
86Rn, after which the eighth shell begins.

The author has observed that various shell closures and subshell symmetries

coincide with local minima in nuclear binding energy curves. While the analysis

of these energetic correlations is beyond the scope of this article, they are under-

stood to arise from the nilpotent and symmetrical structure of nuclear matter in the

R(3)SO(3) framework.

R E M A R K . The symmetry and duality observed in nuclear shell packing—mirroring

that of electronic shells—emerges naturally from the algebraic structure of the

R(3)SO(3) framework and the solitonic eigenvalues governing compounded matter.

13 Cosmic Background Potential

Potential differences are ubiquitous across various states of atomic and molecular

matter, including crystalline solids and gaseous environments. For instance, within

atomic structures, potential differences emerge between electron shells and sub-

shells; in crystalline materials, the Seebeck effect exemplifies a potential difference
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generated between two dissimilar structures; and in gaseous systems, such differ-

ences underpin the build-up and discharge mechanisms leading to phenomena

like lightning, whether in thunderclouds or volcanic-induced updrafts. The pro-

gressive variation in electric potential from the Earth’s surface into space is also a

well-documented phenomenon.

In Observation 10.1 (pp. 58) (Effective Energy Increase in SPDC), an apparent

increase in the effective energy of down-converted photons was described—an anom-

aly not accounted for within the conventional quantum field framework. This obser-

vation implicitly suggests the influence of a globally elevated, ambient potential.

The existence of a cosmic background potential is here proposed as a universal

energy reservoir—a medium into which excess energy may be deposited or from

which a deficit may be compensated during localised interactions. An analogue of

this concept is found in the Seebeck effect, wherein each crystalline structure pos-

sesses a well-defined heat capacity and emits a characteristic black-body spectrum,

interpreted in this context not as continuous but as composed of discrete spectral

components. These components correspond to modified electron transitions within

the material’s Fermi layer, generating quantised phonons that are absorbed and

re-emitted internally.

At the interface between dissimilar crystalline materials, these phonons—analo-

gous in behaviour to photons—require matching energy levels to be absorbed across

the boundary. When such a match is energetically non-viable, the interaction ne-

cessitates the borrowing or depositing of energy from a background potential. In

conductors, this mechanism manifests macroscopically as the Seebeck effect.

P R O P O S I T I O N 13.1: Existence of a Cosmic Background Potential. Within the R(3)SO(3)
framework, and consistent with the nilpotent structure of the universe described

in Section 6 (pp. 42), there exists a spatially extended background potential field

VCB, termed the cosmic background potential. This potential acts as a universal

energy reservoir, enabling localised quantum and thermodynamic processes—such

as phonon-photon conversion or frequency shifts during parametric interactions—to

proceed through transient energy exchange with the ambient field, without requiring

local conservation closure.

In accordance with the nilpotency of the universe, this background potential

is necessarily balanced by a corresponding contra-potential
−VCB in the contra-

universe, such that the total potential vanishes when considered across the full

system. The observable asymmetry in energy exchange is thus a local phenomenon,

arising from the projection of this nilpotent structure into the observable universe.

The absence of this background potential from standard quantum mechanical

treatments leaves many observed interaction phenomena unexplained or artificially

constrained. Its explicit inclusion in the theoretical framework allows a coherent

account of energy flow in systems undergoing transition across structural or environ-

mental boundaries.
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P A R T I V

Macroscopic Systems

In Part I, we established the R(3)SO(3) mathematical framework, from which

the quantised Maxwell field equations in vacuum naturally emerge. This founda-

tion demonstrated how the internal structure of space—encoded in cross-product

cyclicity and rotational symmetry—gives rise to coherent field dynamics.

In Part II, we extended this framework to include structured fields, enabling the

description of quantised topological electromagnetic solitons embedded within a

genuinely nilpotent Universe. This involved the aggregation of solitons, the emer-

gence of inertial and energising fields, and the formulation of interaction principles

governed by internal field geometry and curvature.

In Part III, we described particles as quantised topological electromagnetic soli-

tons within the R(3)SO(3) framework. We showed that mass arises as an emergent

property and recovered the Einsteinian expressions for relativistic mass. Conse-

quently, R(3)SO(3) cannot be interpreted within the four-dimensional spacetime

of special relativity, as such a reduction would lead to contradictions with physical

experience.

In Part IV, we develop a new principle of relativity consistent with the nilpotent

and quantised structure of the R(3)SO(3) framework. From this foundation, both

gravitational and Coulomb fields are derived as emergent field phenomena. These

derivations yield testable predictions, including the precession of planetary orbits

and time dilation effects. The latter is demonstrated using the Bohr model of the

hydrogen atom, where shifting atomic orbital frequencies under field influence

accounts for both relativistic time dilation and spectral blue shift. In this formulation,

classical field theories are unified and reinterpreted through the internal geometry

of quantised space.

In Part IV, we develop a new principle of relativity consistent with the nilpotent

and quantised structure of the R(3)SO(3) framework. From this foundation, both

gravitational and Coulomb fields are derived as emergent field phenomena. These

derivations yield testable predictions, including the precession of planetary orbits.

The latter is demonstrated using the Bohr model of the hydrogen atom, where

shifting atomic orbital frequencies under field influence accounts for both relativistic

time dilation and spectral blue shift. In this formulation, classical field theories are

unified and reinterpreted through the internal geometry of quantised space.

14 Principle of Relativity R(3)SO(3)

The R(3)SO(3) framework is formulated within an absolute reference structure.

However, in our empirical experience, we do not observe or measure phenomena

with respect to such an absolute frame. Instead, our measurements are conducted

relative to locally co-moving frames—typically defined by terrestrial or solar system

scales. An important empirical exception arises from the observation of the cosmic

microwave background (CMB) radiation. The dipole anisotropy of the CMB provides
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a means to determine the velocity of the Sun, and by extension the Earth, with

respect to this radiation field.

Given that the CMB is isotropic and uniform across the celestial sphere, it serves

as a natural candidate for a universal rest frame. The radiation’s origin at the so-called

big bang and its present uniformity suggest it is stationary with respect to the large-

scale structure of the Universe. If this radiation were to possess a motion relative to

some background, it would imply the existence of a higher-order embedding space

within which our Universe itself is in motion. Such a hypothesis would necessitate

a framework extending beyond R(3)SO(3) to a larger gauge space, for instance

R(3)R(3)SO(3), with R(3)SO(3) as a proper subspace.

However, such an ontological extension leads to an infinite regress of spaces

and symmetries. In the author’s view, these constructions—while mathematically

tractable—are philosophically unproductive and do not enhance our understanding

of physical reality. The R(3)SO(3) framework, as constructed, offers a self-contained,

nilpotent description of field and particle interactions without requiring recourse to

an external embedding space.

The question of how motion is perceived relative to various frames has histori-

cally invoked concepts such as the ether drag hypothesis. This notion postulated that

a stationary luminiferous ether was partially dragged by ponderable bodies, such as

planets, thereby creating a locally co-moving reference frame for light propagation.

However, the ether drag theory was ultimately rejected, in part due to its inability to

account for the observed phenomenon of stellar aberration. The cumulative develop-

ment of Lorentz transformations and Einstein’s principle of relativity (see discussion

in Appendix C (pp. 101)), expressed within the special theory of relativity, is regarded

as having resolved this issue within the context of early twentieth-century physics.

Nevertheless, to understand the historical objections fully, it is instructive to review

the classical criticisms that led to the abandonment of the ether drag hypothesis.

The classical criticism of ether drag was rooted in analogies: light propagating

through the ether was compared to a swimmer being carried by a river’s current.

In this analogy, an observer in a boat moving with the river would perceive no

aberration in the swimmer’s trajectory. Similarly, a photon in a dragged ether would

not show aberration relative to an Earth-based observer. Since stellar aberration is

observed, the ether drag model was deemed insufficient.

However, these classical analogies predate the quantum understanding of light’s

wave–particle duality. Within the R(3)SO(3) framework, photons are described as

structured solitonic excitations. When a photon approaches a moving body, it begins

interacting with that body’s field structure. As this interaction develops, the photon

acquires a velocity component in the direction of the body’s motion. To conserve

momentum within the composite field structure, the photon’s propagation vector is

altered, effectively compensating for the acquired velocity component.

This dynamic adjustment leads to an angular displacement in the photon’s trajec-

tory—precisely the mechanism responsible for the observed aberration of starlight.

The aberration is thus interpreted as a field-interaction effect rooted in conserva-

tion principles and solitonic structure, rather than requiring a mechanical ether or

invoking special relativity postulates.
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The Earth–Moon system offers further support for this field-dragging perspective.

The Moon is tidally locked and effectively entrained by Earth’s field. Similarly, Earth

is dynamically influenced by the Sun’s field, which in turn is structured within the

galactic field associated with the Milky Way. Each body is thus nested within the field

structure of larger systems, and motion is expressed through these interlinked field

relationships. The principle of relativity, in this context, is recast not as a symmetry of

inertial frames, but as a statement of field-constrained dynamics within a nilpotent,

structured universe.

14.1 Transportivity

Part I concluded with Proposition 4.1 (pp. 27), which introduced a fundamental

property of space termed transportivity, denoted T . In vacuum, this is defined by

the square of the speed of light:

T := c2.

Transportivity expresses the maximal causal propagation speed permitted by the

structure of space, independent of any particular field equations. Unlike the tradi-

tional formulation c = 1/
p
ϵ0µ0, which links the speed of light to the permittivity

and permeability of free space, the R(3)SO(3) framework recognises c as a primitive

constant, not derived from other field properties.

In Section 5.1 (pp. 33), the aleph function was introduced as a means of encoding

the localised but energy-free field structure of solitons. Although these fields do not

carry energy in the classical sense, they occupy space and define the vibrational

eigenmodes of solitons. This occupancy imposes a constraint on space’s intrinsic

transport capacity. Specifically, the solitonic fields reduce the available transportivity

through their structured magnetic configurations, such that:

Tl = c2 −∑
n
V (⃗rn),

where V (⃗rn) denotes the effective scalar potential induced at the local reference

point by solitons located at positions r⃗n elsewhere in space. These potentials arise

from the squared magnitudes of the fields, since energy is proportional to φ2 and its

glueonic counterpart φ2
g , and potential is their spatial derivative. Thus,

V (⃗rn) ∝∇(
φ2 +φ2

g

)
.

The accumulated effect across all solitonic excitations results in an effective reduction

in local transportivity:

Tl = c2 − c2
a ,

where c2
a :=∑

n V (⃗rn).

D E F I N I T I O N 14.1: Ambient Transportivity Deficit. The quantity c2
a is defined as the

ambient transportivity deficit induced by the presence of structured solitonic fields

throughout space. It quantifies the cumulative reduction of transportivity due to

field-induced scalar potentials and is given by:

c2
a :=∑

n
V (⃗rn),
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where V (⃗rn) denotes the effective scalar potential at the local point induced by the

soliton located at position r⃗n . These potentials arise from the magnetic and glueonic

field intensities as:

V (⃗rn) ∝∇(
φ2 +φ2

g

)
.

The local speed of light, as experienced within such a structured field environ-

ment, is therefore:

c2
l = Tl = c2 − c2

a .

This decomposition of transportivity has direct implications for the d’Alembert

wave equation. Recall its canonical form:

c2∂
2ϕ

∂x2 − ∂2ϕ

∂t 2 = 0.

Substituting the decomposition c2 = c2
l + c2

a , we obtain:

c2
l
∂2ϕl

∂x2 + c2
a
∂2ϕa

∂x2 − ∂2ϕl

∂t 2 − ∂2ϕa

∂t 2 = 0,

which separates into two independent wave equations—each governing a compo-

nent of the field evolution under distinct contributions from local structure (cl ) and

ambient modulation (ca).

R E M A R K (On the Michelson–Morley Experiment). This decomposition offers a nat-

ural interpretation of the Michelson–Morley experiment. The interferometric appa-

ratus is sensitive only to cl , the local causal transportivity of light within the experi-

mental frame. Since ca is embedded in the field structure and manifests through a

space-filling solitonic background, it remains undetectable by local interferometric

methods. The observed invariance of the speed of light is therefore a manifestation

of the locality of cl , not of a universal constancy of c across inertial frames.

P R O P O S I T I O N 14.1: Relativity in the R(3)SO(3) Framework. In the R(3)SO(3) frame-

work, the principle of relativity is not characterised by the invariance of physical laws

across inertial frames, but by the locality of transportivity governed by the solitonic

field structure of space. The apparent constancy of the speed of light, as observed in

experiments such as Michelson–Morley, reflects the locality of cl , the transportivity

available after reduction by the ambient transportivity deficit c2
a . This reinterpre-

tation of relativistic invariance replaces global symmetry with field-constrained

causality in a nilpotent universe.

15 Gravity and Electrostatic Forces

The definition of gravity and electrostatic forces within the R(3)SO(3) framework re-

quires a heuristic-based development. This development must respect the principles

of R(3)SO(3) and bridge the microscopic domain of quantised topological solitons

with the macroscopic regime, where force interactions are described in terms of the

emergent property of mass.

In a perfectly symmetrical nilpotent universe, atomic structure would assemble

in such a way that all forces cancel, resulting in an inert body devoid of fields and
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interaction mechanisms with any other body. Section 5.5 (pp. 37) established that

the elementary charge e is a phenomenon distinct from the load l. Subsequently, in

Section 11 (pp. 60), its glueonic analogue—the glue f—was introduced. Demonstra-

tion 5.1 (pp. 41) showed that when there is an asymmetry between a positive and

a negative load, both modelled as imaginary quantities in R(3)SO(3), a small real

residual force remains, proportional in magnitude to the asymmetry.

The aleph function is introduced in Definition 5.1 (pp. 33), where the solitonic

field structure in R(3)SO(3) is defined. When atomic matter assembles into a pon-

derable body M , the solitonic fields (comprising both load and glue components)

largely cancel, reinstating a nilpotent state. However, residual asymmetries in these

fields manifest as nonzero field structures, partially filling the surrounding space and

signalling the presence of the body.

The mass of M is understood as an emergent property of solitons in R(3)SO(3).

Theorem 11.1 (pp. 67) derives relativistic energy and inertial mass from solitonic

structure. Describing the interaction between massive bodies thus requires a transi-

tion to a macroscopic viewpoint.

T H E O R E M 1 5 . 1 : Transportivity and the Gravitational Phenomenon.

In Section 4.4 (pp. 27), we introduced transportivity, denoted by T , as a fundamental

property of space, defined as

T := c2.

A neutral massive body M generates, at a distance r , a scalar potential V(r ) consis-

tent with R(3)SO(3) potentials.

This potential is interpreted as a gyratory electromagnetic wave permeating the

local space and manifesting as a reduction in transportivity:

T (r ) := c2 −V(r ).

This local modulation of transportivity gives rise to the classical gravitational force:

FG = GMm

r 2 .

P R O O F . For a composite soliton representing neutral atomic matter, we define an

effective radius

r= GM

c2 ,

which corresponds to half the Schwarzschild radius in general relativity, and is

consistent with the nilpotent structure of the framework.

To model macroscopic fields, we introduce the macro-aleph function ℵmacro,

analogous to the quantum-scale definition in Section 5.1 (pp. 33). Normalised to T ,

it is defined piecewise as

ℵmacro(r ) =


ℵ′

macro(r ) = T u

r

∫ r

0

(r

r

)u−1
dr =−T , if r ≤ r

ℵ′′
macro(r ) = T u

r

∫ ∞

r

( r

r

)u+1
dr = T , if r ≥ r.
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c2

Gm1

c2 r = (1+x)ro

ro−xro

cp1

c2
l2

x̂ ŷ ẑO

Gm2

c2

(m1) (m2)

Figure 5: Transportivity, Gravitational Interaction, and Orbits. The horizontal axis represents
the radially reduced space; the vertical axis represents transportivity, ranging from zero to c2.
The figure illustrates the variation in transportivity resulting from the presence of two massive
bodies, m1 and m2, where m2 = xm1, positioned symmetrically about their barycentre.
The body m2 perceives a local speed of light cl2 = c2 − cp1 , where cp1 is the transportivity
deficit induced by the gravitational potential of m1. Although the diagram emphasises the
effect of m1 on m2, the interaction is fully reciprocal: each body induces a transportivity
deficit influencing the other, and the forces satisfy F12 = F21 by construction.

This yields the nilpotent result ℵ′
macro(r )+ℵ′′

macro(r ) = 0. Setting u = 1 corresponds

to a non-hollow soliton. The external component ℵ′′
macro(r ) defines a scalar field

G(r ) = GM

r 2 .

The relationship between the potential V(r ) and its field G(r ) is given by

G(r ) =−dV(r )

dr
,

which integrates to yield

V(r ) =−
∫
G(r )dr = GM

r
.

As with quantum fields, these macroscopic fields do not carry energy; rather,

they instantaneously inform the remainder of the universe of the body’s presence by

modulating transportivity:

T (r ) = c2 −V(r ) = c2 − GM

r
.

We define the potential-induced transportivity deficit c2
p as the reduction in trans-

portivity experienced by a second body due to the scalar potential generated by a

massive body M . That is,

c2
p :=V(r ) = GM

r
.

This allows the transportivity to be written compactly as

T (r ) = c2 − c2
p ,
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which in turn defines the local speed of light perceived by the body m at position r :

c2
l = T (r ) = c2 − c2

p = c2 − GM

r
.

Figure 5 (pp. 81) illustrates this relationship by showing the variation in transportivity

resulting from two massive bodies.

The energy of m is then given by

Em = mc2 = m
(

c2
l +

GM

r

)
,

which rearranges to

mc2
l = mc2 − GMm

r
,

partitioning the energy into three components: inertial energy equals vacuous energy

minus potential energy. The vacuous energy refers to the energy of m in an otherwise

empty universe, where no other bodies are present to influence its transportivity.

The vacuous energy also defines the body’s gravitational mass, as well as its rest mass

m.

Differentiating the inertial energy mc2
l with respect to r yields the force acting

on m:

FG =
d(mc2

l )

dr
= GMm

r 2 ,

which causes m to accelerate toward M , and vice versa. □

Unlike particles in accelerators, the gravitational force FG does not contribute

additional energy to either m or M ; rather, their total energies remain constant.

R E M A R K . This framework may offer new insights into the dynamics of gas clouds.

If such clouds behave as hollowed solitons with a potential well (i.e., u > 1), the

tendency of gas clouds to contract around a central locus over time may be naturally

explained.

C O R O L L A R Y 1 5 . 1 . 1 : Inertial and Gravitational Mass.

Transportivity modulates inertial mass. If cl < c is the local speed of light, then a

body with gravitational mass m possesses an inertial mass

m(i ) = m
c2

l

c2 .

D E F I N I T I O N 15.1: Mass Types and Associated Energies. Within the R(3)SO(3) frame-

work, the following mass and energy notions are distinguished:

• m denotes the gravitational mass, which also serves as the rest mass, defined by

the body’s vacuous energy.

• m(i ) denotes the inertial mass, which varies with position through its dependence

on the local transportivity T (r ).

• mc2 is the body’s vacuous energy, representing the energy of the body in the

absence of any other mass influencing transportivity.
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• m(i )c2 = mc2
l is the inertial energy, where c2

l = T (r ) denotes the local speed of

light squared.

• m(p)c2 = GMm/r is the potential energy associated with the gravitational interac-

tion between the body and an external mass M .

While gravitational and inertial masses are experimentally indistinguishable in

classical physics, the distinction becomes necessary in this framework due to the

role of spatial transportivity in determining inertial behaviour.

C O R O L L A R Y 1 5 . 1 . 2 : Interaction of Charged Bodies.

If the atomic matter of the body M is not neutral—that is, if it is ionised—it carries

a net charge Q , meaning that the number of positive loads l+ are not balanced by

the number of negative loads l–. As established in Section 5.5 (pp. 37), the load is

treated in the R(3)SO(3) framework as an imaginary quantity. Therefore, the method

applied in the preceding gravitational derivation can be extended to account for

charged bodies.

Let iQ represent the electric charge, modelled analogously to the mass M , by

replacing GM with ke (iQ), where ke = 1/(4πϵ0) is Coulomb’s constant and i denotes

the imaginary unit. This substitution leads to an effective radius

r′q = ke (iQ)

c2 ,

which has units of mkgC−1. This quantity is used to define the electric potential

Ve (r ′) analogously via the aleph function.

As a final step, we normalise the radial variable by dividing r ′ by the charge-to-

mass ratio constant ϱ, defined in Axiom 4.1 (pp. 21) (Electromagnetic Action and

Coupling Constants),

r = r ′

ϱ
, where ϱ := 1kgC−1.

This yields the electric potential

Ve (r ) = ke (iQ)

r
,

and the corresponding force becomes

FE = ke (iQ)(iq)

r 2 =−keQq

r 2 ,

indicating that like charges exert repulsive forces, in contrast to the attractive nature

of gravitational interaction.

The Moon’s orbital dynamics are governed primarily by the Earth’s gravitational

field, which defines its immediate sphere of influence. However, both the Earth

and Moon exist within a broader ambient domain governed by the Sun, which in

turn resides within the gravitational and field structure of the Milky Way. Each of

these nested systems contributes cumulatively to the ambient transportivity deficit

experienced locally.

The preceding theorem and corollaries address local field interactions and gravi-

tational effects under the assumption of an idealised vacuum background, thereby
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excluding the ambient deficit c2
a arising from large-scale field contributions. A com-

prehensive treatment of planetary motion within the R(3)SO(3) framework requires

that this ambient deficit be incorporated.

Accordingly, the total transportivity should be expressed as:

T (r ) := c2 − c2
a −V(r ),

where c2 is the universal vacuum transportivity, c2
a is the ambient transportivity

deficit as defined in Definition 14.1 (pp. 78), and V(r ) denotes the local potential

generated by the body of interest.

In this expanded formulation, the aleph function must be normalised not to

c2, but to the reduced background value c2 − c2
a , reflecting the diminished causal

propagation capacity available in the local environment.

For the purposes of the present work, we continue under the simplifying assump-

tion that c2
a is excluded, and defer its full incorporation to an expanded treatment of

the theory.

15.1 Precession of Planetary Orbits

This section applies the concept of transportivity to classical mechanics, specifically

analysing a two-body system in circular orbit about their common barycentre, which

serves as the origin for this analysis.

Let m1 and m2 be the masses of the two bodies, with m2 < m1. Define the mass

ratio x = m2/m1, and let ro be the distance from m2 to the barycentre. (See Figure 5

(pp. 81).) Then, the distance from m1 to the barycentre is r1 = xro , and the total

separation between the bodies is r = (1+x)ro .

The transportivity at the positions of m1 and m2 is given by

T1 = c2
l1
= c2 − Gm2

r
, T2 = c2

l2
= c2 − Gm1

r
, (21)

where G is the gravitational constant.

Assuming Gm1/r ≪ c2, the kinetic energies of the orbiting bodies can be related

to the available potential energy Gm1m2/r as follows:

1

2
m2v2

2 = 1

2
m2(c2 − c2

l2
) = Gm1m2

2(1+x)2ro
,

1

2
m1v2

1 = 1

2
m1(c2 − c2

l1
) = Gm1m2

2 (1+x)2

x ro

.

where {v1, v2} << c . Solving for the orbital velocities yields:

v2 =
 

Gm1

ro(1+x)2 , v1 =
 

Gm2x

ro(1+x)2 = xvb .

The centrifugal forces acting on m1 and m2 are modified by the local transportiv-

ity (see Corollary 15.1.1 (pp. 82) Inertial and Gravitational Mass):

F centri
2 =

c2
l2

c2

m2v2
2

ro
, F centri

1 =
c2

l1

c2

m1v2
1

xro
.
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The gravitational forces are given by:

F
grav
2 = Gm1m2

r 2 , F
grav
1 = Gm1m2

r 2 .

The effective potential for the orbit of m2 is:

V2(ro) =
c2

l2

c2

L2
2

2m2r 2
o
− Gm1m2

ro(1+x)
, (22)

where L2 = m2v2ro is the angular momentum of m2.

Expanding m2c2 using Equation (21) and substituting into Equation (22), we

obtain:

Vb(ro) =
c2

l2

c2

Ç
L2

2

2m2r 2
o
− Gm1m2

(1+x)ro

å
−

Gm1L2
b

m2c2r 3
o

.

In the limit x → 0, m1 → M , m2 →µ= mM
m+M , and ro → r , the effective potential

simplifies to:

Veff(r ) = L2

2µr 2 − GMµ

r
− GML2

µc2r 3 , (23)

where µ is the reduced mass and L =µvr is the angular momentum.

The additional third term −GML2/µc2r 3 leads to a precession of elliptical orbits,

an effect not predicted by Newtonian mechanics.

R E M A R K . The effective potential Veff(r ) given in (23) also emerges from the post-

Newtonian limit of the Schwarzschild metric, the first exact solution to Einstein’s

field equations in general relativity. This correction to the Newtonian potential leads

directly to the celebrated result for the relativistic precession of planetary orbits. The

corresponding precession angle per revolution, originally derived by Einstein in 1916

and famously applied to Mercury, is approximately:

δϕ≈ 6πG(M +m)

c2 A(1−e2)
,

where A is the semi-major axis and e is the orbital eccentricity.

16 Clocks

Modern atomic clocks achieve their exceptional precision by exploiting the highly

stable and well-defined transition frequencies between quantised electron orbital

energy levels in atoms. In this section, the Bohr model of hydrogen is employed to

simulate atomic clocks within the R(3)SO(3) framework. However, it must first be

acknowledged that, within atomic matter, classical orbits—as found in planetary

systems—do not exist. Instead, such orbits serve as a useful duality, offering a

conceptual analogue for analysing electron shells. In the R(3)SO(3) framework,

these shells are understood as discrete eigenstates of gyrations within solitonic field

structures, rather than as trajectories of point particles.
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c2

ro

Gγm1

c2

r = (1+x)ro

c2
p1

c2
2

v2
B

−xro
x̂ ŷ ẑO

(m1) (m2)

Gγm2

c2

Figure 6: Boosted Orbits. This sketch builds on Figure 5 (pp. 81) to illustrate the effect
of Lorentz boosting on a two-body system. Three key features are shown: (i) the boost-
induced transportivity deficit v2

B appears as a constant offset; (ii) the energy levels of m1 and
m2 undergo dilation due to boosting; and (iii) the transportivity curves flatten, becoming
asymptotic to v2

B rather than to zero. The approach developed here for boosted orbits is
structurally congruent with the treatment of ambient transportivity deficits. In environments
with both ambient and boost-induced effects, the total deficit becomes v2

B 7→ v2
B + v2

a .

Consider a microcosm consisting of hydrogen atoms that is Lorentz-boosted to a

velocity vB by an accelerating and energising force. The energy of the microcosm

increases by the Lorentz factor

γB = 1»
1− v2

B/c2
,

and the transportivity relevant for the interaction between the proton and electron

within a hydrogen atom in this boosted microcosm is given by

T (r ) := c2 − v2
B −V(r ),

where v2
B represents the ambient transportivity deficit internal to the boosted frame.

This is illustrated in Figure 6 (pp. 86).

The electrostatic potentials generated by the proton and electron, respectively,

are

V+(r ) = ke (iγBq)

r
· c2 − v2

B

c2 , V–(r ) = ke (−iγBq)

r
· c2 − v2

B

c2 .

The boosting of the electrostatic charge is a direct consequence of the R(3)SO(3)
framework, in which both the l and fcontributions are enhanced under Lorentz

transformation. The factor
c2−v2

B
c2 arises due to the normalisation of the aleph func-

tion to the available transportivity T = c2 − v2
B.

The electron’s potential energy in the hydrogen atom is determined by the prod-

uct of the electrostatic charge of the electron and the potential due to the proton:

Ve =
(−iγBq

)Çke (iγBq)

r
· c2 − v2

B

c2

å
= ke q2

r
.
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As in gravitational systems, the potential energy of the electron is partitioned

into kinetic and electrostatic contributions. For a bound electron in the boosted

microcosm, the kinetic energy involves the boosted mass, yielding

1

2
γBme v2 = 1

2
· ke q2

(1+x)2r
,

where x is the inverse of the proton-to-electron mass ratio.

Bohr’s original postulate quantised the orbital angular momentum of the electron

as an integer multiple of the reduced Planck constant −h, classically written as

me vr = n−h.

In the R(3)SO(3) framework, this quantisation condition is reinterpreted: it defines

the eigenvalues associated with electron shells as solitonic gyration states, and these

eigenvalues remain invariant under Lorentz boosts. The dynamical solitonic state,

however, evolves with the relativistically boosted mass γBme , ensuring that energy

relations and field interactions remain consistent with the relativistic structure of

the theory.

Solving for the radius r , we obtain

r = γBn2−h2(1+x)2

ke me q2 ,

Substituting this result into the expression for the potential energy yields

Ve = (ke q2)2me

γBn2−h2(1+x)2
.

This expression shows that the potential energy associated with electron transitions

in atomic matter decreases under Lorentz boosts. As a consequence, the energy

difference between quantised states becomes smaller, leading to a longer period

for oscillations—i.e., a dilation of the clock’s ticking rate. This is in agreement with

experimental observations of time dilation in moving atomic clocks, and is naturally

reproduced within the R(3)SO(3) framework.

No discussion of relativistic clocks would be complete without consideration

of gravitational effects. In a gravitational field, the inertial mass of the electron

decreases as a function of gravitational potential:

m(i )
e = me ·

c2 − GM
r

c2 .

Therefore, for two identical stationary clocks positioned at different heights in the

gravitational field of a body M , the ratio of their periods (time between ticks) is given

by

τ1

τ2
= c2 − GM

r

c2 − GM
r+h

,

where h is the height difference. The clock located closer to the centre of mass M
ticks more slowly due to its reduced local transportivity.

R E M A R K (On Gravitational Blue Shift and Mass Duality in R(3)SO(3)). The gravita-

tional shift of clocks described above is derived here from variations in inertial mass,
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as predicted within the R(3)SO(3) framework. In this interpretation, the ticking rate

of a clock is determined by the local transportivity, which in turn modulates the iner-

tial mass of its constituent particles. This contrasts with conventional formulations,

which treat gravitational redshift primarily as a spacetime curvature effect.

Consequently, physical clocks—through their measurable response to gravita-

tional potential—serve as experimental evidence for a distinction between gravi-

tational mass and inertial mass. Within the R(3)SO(3) framework, these are not

identical quantities but emerge from distinct aspects of solitonic field structure:

gravitational mass is associated with the rest-state configuration, while inertial mass

is modulated by the local field-induced transportivity.

16.1 What is Time?

Fundamental to R(3)SO(3) is Axiom 4.1 (pp. 21), which adopted the following funda-

mental physical quantities, now updated with the quantities developed here:

h Planck’s constant, or elementary action (joule second).

ℒ the charges {l,f, v} load, fervour, and vigour, respectively (coulomb).

T Transportivity, the squared speed of light in vacuum (metre2 per second2).

lo Quantised length (metres).

ω̇0 Radial angular velocity, ω̇0 = 2π (radians per second).

h Electromagnetic action h= eclo (coulomb metre squared per second).

ϱ Charge-to-mass ratio, here set to unity ϱ= 1kgC−1.

κ Dimensionless coupling constant relating electromagnetic and Newtonian ac-

tion.

Within this framework, time is not considered a fundamental entity but rather

emerges from the primary physical quantities. A quantised time measure to naturally

arises, defined by

to :=
 

l 2
o

T
,

linking the quantised length lo and the transportivity T . Time thus manifests as a

derived parameter that relates the discrete structure of space to causal propagation,

rather than being an independent background entity.

The above form a set of universal fundamental quantities 𝒰, all of which are

fundamental prime quantities, and only by mathematical representation are some

described by an emergent time (a constant of integration or differentiation) and

emergent mass quantity, compounding some of them.

As the universe unfolds, its state transitions from the past to the present. Philoso-

phers of physics have pondered concepts like the arrow of time, time reversal,

and time symmetries, while some even explore the possibility of time travel. The

R(3)SO(3) framework offers a different perspective.

Instead of focusing on time, an arrow of destiny is introduced, represented by a⃗.

This a⃗ is defined by the relationship where the derivative of set 𝒰 with respect to a⃗
equals a constant k multiplied by 𝒰 itself:

d𝒰
da⃗

= k𝒰.
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Concepts like time travel or time reversal would necessitate a reversal of this arrow

of destiny. Only then, metaphorically speaking, could the egg be unscrambled.

D E M O N S T R A T I O N . Assume k = 1. A body has a mass expressed in units of h s/m2

(here h is fundamental quantity action as a unit), travels at a velocity m/s, and

accelerates at m/s2, while the distance made good is expressed in metres. Reversing

the arrow of destiny (k =−1) leaves the mass h s/m2 unchanged (an even number

of unit powers), and similarly leaves the velocity unchanged. However, the accelera-

tion reverses sign (odd number of unit powers), becoming a deceleration, and the

distance made good becomes negative, thus returning to a previous spatial position.

Nuclear Energy Production

Nuclear energy production currently relies primarily on fission, a process where

heavy atomic nuclei are split to release energy. Whilst a well-established technol-

ogy, fission carries the inherent danger of radioactive pollution from the long-lived

byproducts of the reaction, necessitating complex and costly waste management

solutions. Nuclear fusion, the process that powers the sun, promises a cleaner and

virtually limitless energy source, typically using isotopes of hydrogen. However,

achieving sustained and controlled fusion on Earth remains a significant scientific

and engineering challenge, with key development milestones continually being

pushed further into the future. Against this backdrop, Low-Energy Nuclear Reactions

(LENR) have emerged as an enticing alternative, captivating small research groups

with the prospect of nuclear reactions occurring at near room temperature.

Current LENR research continues to explore the anomalous production of energy

and the transmutation of elements, often in the context of metal lattices loaded

with hydrogen or deuterium. A significant area of investigation focuses on the

observation of new elements appearing in the experimental setup that were not

initially present, suggesting nuclear transformations are occurring at low energies.

The role of deuterium and hydrogen as potential catalysts in LENR is also a key

aspect of current research. The prevailing hypothesis suggests that when these light

isotopes are absorbed into the lattice structure of certain metals, they may facilitate

nuclear interactions with the host metal or with each other through mechanisms that

are not yet fully understood. While the exact catalytic mechanisms remain elusive,

the presence of hydrogen isotopes is consistently linked to the reported anomalous

heat and transmutation effects in many LENR experiments.

In the following, an alternative nuclear energy pathway is proposed based on iso-

tope transmutation mechanisms, grounded in nuclear shell structure and energetics.

17 Energy Production by Transmutation of Isotopes

The latent energy stored in the isotopes of elements, seems not to be a research

interest or cited as an explanation for anomalous heat production. From the nuclear

shell packing algorithm Section 12 (pp. 73), the authors research shows that the

isotope of oxygen-16 and oxygen-18 are at the transition from the filled 3{s, p,d}
shell and the begin of the 4{s, p,d , f }. The spontaneous transition or decay 18O =⇒
16O+2n is forbidden because 16O+2p is at a higher energetic state than 18O.
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Similarly, nickel-58 is the first stable isotope that begins filling the 6{s, p,d , f , g }
and 60Ni binding-energy is higher than 59Ni binding-energy, which in turn is higher

than 58Ni. Current nuclear theory, theoretically believe 58Ni to be unstable but has

not been observed to decay. However, the neutron capture reaction 58Ni+p =⇒
59Ni+γ is energetically permitted, successfully demonstrated but requires a neutron

flux produced by some nuclear reaction, with radioactive byproducts.

Let’s consider molecular nuclear reactions: the nickel oxide 58Ni18O =⇒ 60Ni16O+
8.2MeV is permitted. That is about one third of the energy released by the hydrogen

helium fission reaction, if molecular neutron migration from the oxygen to the nickel

can be stimulated.

This reaction should be studied and experimentally investigated. At a specula-

tive first glance, one might envisage mixing pure 58Ni powder with water enriched

in D2
18O, sealed within a container. Such a setup possesses all the basic ingredi-

ents that form the foundation of typical LENR research. Heating the container, if

the preceding reasoning holds, could produce excess heat in an environmentally

friendly manner, with the raw materials not being consumed but merely isotopically

altered—allowing them to be reintegrated into industrial use.

R E M A R K (Outlook: Energy Production via Molecular Neutron Migration). If experi-

mentally validated, the neutron migration mechanism proposed herein could open a

fundamentally new pathway for clean, scalable, and sustainable energy production.

Unlike conventional nuclear fission or fusion, this process would utilise stable or

near-stable isotopes as the energy source, with minimal to no radioactive waste,

and without requiring extreme temperatures, pressures, or complex confinement

systems.

Such a discovery would offer a pathway to clean, scalable, and environmentally

benign energy production. It would utilise abundant and stable materials such

as 58Ni and 18O, yielding transmutation products that are themselves stable and

industrially useful, thereby minimising radioactive waste.

Beyond practical energy applications, confirmation of this mechanism would

challenge the current understanding of nuclear energetics, particularly regarding

nuclear interactions within molecular structures. It would stimulate the development

of new theoretical models at the intersection of nuclear physics, condensed matter

physics, and materials science, addressing the role of lattice environments, molecular

field geometries, and stimulated neutron pathways in enabling low-energy nuclear

transformations.

If, furthermore, the induced isotopic transformations prove to be reversible

under controlled conditions, a new class of high-energy density storage systems may

become feasible. In such a scenario, nuclear energy could be temporarily stored and

later released without the creation of hazardous by-products, establishing a radically

new form of battery technology based on reversible nuclear processes.

Given the potentially transformative implications, both rigorous theoretical mod-

elling and carefully controlled experimental studies are strongly encouraged to ex-

plore the feasibility, reproducibility, and potential reversibility of energy production

via molecular neutron migration.
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In this light, energy production and storage via neutron migration-induced iso-

topic transformation may present a realistic, safe, and transformative alternative in

the global search for sustainable energy technologies.

18 Cosmogenesis

The R(3)SO(3) framework permits a novel perspective on the origin and cyclic

evolution of the universe. Under the assumption that the universe and contra-

universe emerged together in the same space as a mathematically nilpotent system,

the initial condition may be expressed as

U + −
U = 0 and U · −U = 1.

These dual systems, while jointly nilpotent, exhibit repulsive interactions. One ex-

pands while the other contracts—an inflationary phase driven by mutual opposition.

If it is assumed that the contra-universe underwent contraction, it may now oc-

cupy a highly compressed region at the centre of the R(3)SO(3) manifold, while our

universe expanded outward, like the surface of a balloon.

In this view, the inflation of our universe is driven by the contracting contra-

universe, balanced against a form of surface tension provided by gravitational forces.

As stars and matter burn and decay, the effective gravitational tension diminishes,

leading to an acceleration of expansion. In parallel, the contra-universe continues to

shrink.

Eventually, a reversal occurs. The contra-universe undergoes a kind of supernova

collapse and rebounds into a new inflationary phase, while our universe deflates

and contracts. This suggests a cosmological cycle of expansion and contraction—an

eternal dynamical equilibrium governed by the interplay between dual universes. In

this framework, information is not preserved in the detailed configurations of matter,

but instead encoded across cycles into larger-scale structures. These may persist as

imprints visible in the cosmic microwave background.

The R(3)SO(3) manifold itself is nine-dimensional, whereas the physical universe

we inhabit is three-dimensional. This disparity allows for the possibility that our

three-dimensional universe is a surface embedded within a higher-dimensional

space—perhaps the boundary or hypersurface of a nine-dimensional sphere. In

such a topology, the universe may not be spatially infinite, but instead relatively

compact, with light paths tracing curved or closed geodesics. Under this condition, it

becomes conceivable that distant, highly redshifted objects we observe—interpreted

as primordial galaxies—could in fact be earlier images of our own Milky Way or local

structures, observed along extended causal loops through the curved geometry of

space.

19 Beyond the Standard Forces

“In biology we are faced with an entirely different situation. . . . We

are here obviously faced with events whose regular and lawful unfold-

ing is guided by a ‘mechanism’ entirely different from the ‘probability

mechanism’ of physics.”
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— Erwin Schrödinger, What is Life?

The standard model of physics recognises four fundamental forces: electro-

magnetic, weak, strong, and gravitational. Within the R(3)SO(3) framework, the

electromagnetic force arises naturally from the structured charge l, whose role as

the generator of electric fields is retained and extended. However, the introduction

of two additional structured charges—fervour fand vigour v—necessitates a reeval-

uation of force classification. These charges are not abstract artefacts but emerge

from the same algebraic and solitonic principles that give rise to electromagnetic

and gravitational phenomena.

It is here proposed that the missing manifestations of these forces are not to be

found in conventional particle interactions but in the origin and organisation of life

itself. The force arising from fmay underlie the processes of the plant kingdom:

growth, structural patterning, and energy assimilation. In parallel, vmay drive the

internal and external dynamism of the animal kingdom: movement, cognition, and

the directional use of energy. Or, both may contribute to both the plant and animal

kingdom.

In the R(3)SO(3) formalism, photons are understood as load-mediated solitons,

transferring energy via interactions with electron shells. However, as elaborated in

Remark 11.3 (pp. 72), neutrinos are the structural equivalents of photons for the f

and vcharges—each corresponding to quantised solitonic excitations that transfer

energy through field coupling rather than direct electromagnetic means.

Photons provide heat and energise electrons, catalysing photosynthesis and sup-

porting a wide range of biochemical processes, among others. But if life arises from a

deeper solitonic coherence, it should also draw not only on electric (load) dynamics

but also on the persistent, low-interaction fields associated with fand v. In this

expanded view, neutrinos—long considered ghostlike due to their small cross sec-

tions in standard electroweak theory—are reinterpreted: those that carry fervour

and vigour interact through entirely different field channels and could exhibit a

large effective cross section with living systems. Whereas—in conventional think-

ing—neutrinos are like darts striking a bull’s eye, in life-coupled interactions they

could behave more like darts hitting a wide-open dartboard: absorbed, transferred,

and exchanged as integral components of biological structure and function.

If correct, this interpretation suggests that life is not an emergent anomaly, but

a structurally compelled phenomenon—a product of the full symmetry encoded

in the R(3)SO(3) manifold. The structured interplay of load, fervour, and vigour

provides the field environment in which life could emerge as a coherent solitonic

organisation. Life may not be a rare exception, but the natural expression of field-

theoretic completeness. The evolution of life on Earth could be a manifestation of

the theories expressed here.

Conclusion

This work has introduced the R(3)SO(3) framework as a new ontological and mathe-

matical foundation for physical theory, grounded in the postulate of a nilpotent uni-

verse. At its core, R(3)SO(3) replaces conventional operator-based formulations of
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quantum mechanics with a structurally constructive and geometrically constrained

system based on topologically quantised solitons. Within this framework, all physical

phenomena—fields, particles, interactions, and motion—emerge as manifestations

of local field structures embedded in a causally consistent, non-energetic back-

ground.

A central innovation in this approach is the development of a ternary number

system within a framework that reinstates classical algebra in the formulation of

the special orthogonal gauge group R(3)SO(3), deliberately avoiding the use of Lie

algebras. This decision is not an aesthetic divergence but a foundational shift: it en-

ables the modelling of continuous field deformations and gauge-consistent dynamics

without recourse to operator-based symmetry algebras. The algebraic structures

introduced here are intrinsically compatible with the discrete and quantised char-

acter of physical reality as described by solitonic field entities. Within this setting,

fields do not carry energy in the classical sense; rather, they define the geometric

and topological conditions under which solitonic structures exist, propagate, and

interact.

The recovery of quantum mechanics arises naturally from the intrinsic structure

of soliton eigenstates. Rather than treating quantum properties as probabilistic

or axiomatic, the R(3)SO(3) framework derives them from structural resonances

and constraints within a quantised, causal space. This eliminates the need for

operator formalism, Hilbert spaces, or wavefunction collapse, and replaces them

with mathematically grounded field dynamics. Entanglement, quantised angular

momentum, and energy levels are shown to emerge from geometric properties and

conservation laws in the solitonic field lattice.

Moreover, key features of special and general relativity are recovered not through

geometric curvature or Lorentz symmetry alone, but as emergent effects of trans-

portivity—an intrinsic property of space governing causal propagation. Time dilation,

gravitational redshift, and the invariance of the local speed of light arise as natural

consequences of modulated inertial mass and field-structured transport deficits. The

gravitational interaction, in particular, is recast as a manifestation of field-structured

potential variation, not spacetime curvature, and permits direct reinterpretation of

the Einstein precession and gravitational clock effects.

Together, these elements define a unified mathematical and physical architecture

capable of subsuming quantum, relativistic, and classical results without the need

for quantisation rules, symmetry postulates, or geometric reification. The R(3)SO(3)
framework presents not merely a reinterpretation of known physics, but a proposal

for a coherent, causal, and quantised field theory rooted in topological structure and

algebraic consistency.

Importantly, this framework also elevates the role of structured charges beyond

electromagnetism. The introduction of fervour and vigour—two additional struc-

tured charge types within R(3)SO(3) —points to the existence of forces not recog-

nised within the Standard Model. If these charges are indeed fundamental, their

corresponding forces may not manifest in traditional particle interactions, but in

the processes of life itself. Neutrinos, long considered elusive and marginal, may in

fact carry these life-related charges. Unlike photons, which energise matter via well-

characterised electromagnetic interactions, neutrinos may act as agents of biological
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coherence, absorbed and exchanged through structures tuned to the fields of vigour

and fervour. The suggestion that life depends on such field-based interactions would

reframe biology not as an emergent exception, but as an intrinsic feature of field

structure—a natural outgrowth of the Universe’s deeper symmetry.

Future work will extend this foundation to multi-body dynamics, spin–statistics

relationships, and cosmological-scale structure, as well as further develop the im-

plications of the nilpotent constraint on conservation laws, gauge freedom, and the

emergence of physical constants.

In closing, it is worth recalling the prescient words of Henri Poincaré1, whose

philosophical insight anticipated the dilemma at the heart of modern physics:

“If we were to admit the postulate of relativity, we would find the same

number in the law of gravitation and the laws of electromagnetism—the

speed of light—and we would find it again in all other forces of any origin

whatsoever. This state of affairs may be explained in one of two ways:

either everything in the universe would be of electromagnetic origin, or

this aspect—shared, as it were, by all physical phenomena—would be a

mere epiphenomenon, something due to our methods of measurement.

How do we go about measuring? The first response will be: we transport

solid objects considered to be rigid, one on top of the other. But that is no

longer true in the current theory if we admit the Lorentzian contraction.

In this theory, two lengths are equal, by definition, if they are traversed

by light in equal times.

Perhaps if we were to abandon this definition Lorentz’s theory would be

as fully overthrown as was Ptolemy’s system by Copernicus’s intervention.

Should that happen someday, it would not prove that Lorentz’s efforts

were in vain, because regardless of what one may think, Ptolemy was

useful to Copernicus.”

— Henri Poincaré, Sur la dynamique de l’électron

It is in this spirit that the R(3)SO(3) framework has been developed—not to

discard the insights of relativity and quantum theory, but to reinterpret them within

a deeper constructive ontology. By replacing measurement-centric formulations

with field-constrained causality and solitonic structure, R(3)SO(3) aims to restore

a physical basis to the shared features of all interactions, and to offer a coherent

foundation from which both electromagnetic and gravitational phenomena may be

understood not as epiphenomena, but as emergent expressions of a unified field

framework. In doing so, this work aspires to continue, rather than overturn, the

legacy of those who sought not just predictive power, but conceptual clarity.

Outlook: Foundations for the Future

The R(3)SO(3) framework not only recasts fundamental physics within a structurally

quantised and causally coherent paradigm—it opens new avenues of inquiry in

1 M. H. Poincaré (1906). Sur la dynamique de l’électron. Rendiconti del Circolo matematico di
Palermo 21.1, pp. 129–175. Translated by Scott Walter In J. Renn (ed.), The Genesis of General
Relativity Vol. 3: Theories of Gravitation in the Twilight of Classical Physics; Part I
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both the natural sciences and technological innovation. Historically, revolutions in

physical understanding have preceded profound shifts in technical capability: from

Newton’s mechanics enabling celestial navigation, to Maxwell’s unification fostering

the electrical age, to quantum mechanics catalysing semiconductors and lasers. If

R(3)SO(3) succeeds in reshaping our understanding of mass, charge, and interaction,

then a similar wave of innovation may follow.

In particular, the framework provides a new lens through which to interpret

complex systems—such as magnetic confinement plasmas, biological signalling, or

gravitational anomalies—not merely through statistical or macroscopic models, but

as emergent phenomena grounded in coherent solitonic structure. For example, the

ITER fusion project relies heavily on simulations rooted in Maxwellian and magneto-

hydrodynamic approximations. Yet the Sun—our natural prototype—exhibits mass

ejections, field instabilities, and flux rope formations that suggest a richer topological

and field-based dynamics. If such behaviours arise from underlying quantised field

structures, then present fusion models may be omitting critical solitonic effects.

Moreover, the introduction of structured field charges—l, f, and v—implies

that there exist field modes complementing the electromagnetic spectrum. These

modes may become technologically exploitable if methods of resonance coupling or

synthetic generation can be discovered. In this way, biological and quantum systems

alike could become not only better understood but also more precisely engineered.

Technologies that today seem out of reach—field-mediated communication, inertia

modulation, or ultra-high-efficiency energy transfer—may prove accessible when

designed with the topological structure of solitons in mind.

A particularly compelling application arises in the domain of energy produc-

tion. Within the R(3)SO(3) framework, nuclear binding and isotopic stability are

reinterpreted as manifestations of topological field configurations, suggesting new

possibilities for low-energy nuclear reactions (LENR) without the need for extreme

temperatures or radioactive byproducts. Specifically, neutron migration between iso-

topes—such as the proposed transmutation of 58Ni and 18O into 60Ni and 16O—may

offer a controlled and scalable pathway to clean energy production. Such reactions,

if confirmed, would not merely represent an incremental advance over fission or

fusion but could inaugurate a new era of energy technology: safe, abundant, and en-

vironmentally benign. Furthermore, if the transmutation processes can be rendered

reversible, a pathway toward ultra-high energy density batteries or novel energy

storage mechanisms may emerge, profoundly impacting the future of sustainable

energy systems.

On the biological side, if the conjecture that neutrinos serve as agents of life’s

coherence is substantiated, it would reframe biology as a field-synchronous process,

not simply a molecular one. Understanding life as a resonance in R(3)SO(3) field

structure suggests new methods for investigating developmental pathways, con-

sciousness, and even regenerative phenomena—fields often regarded as empirical

rather than foundational.

Ultimately, the promise of R(3)SO(3) is not merely explanatory—it is generative.

It provides a canvas for further mathematical construction, a toolkit for physical

exploration, and a basis upon which new science and new technologies may be
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built. Its predictions, once tested, could inform not just the questions we ask but the

instruments with which we ask them.

The constructive ontology presented here is incomplete—yet deliberately so.

It invites collaboration, challenges consensus, and recognises that any enduring

scientific revolution must also be an invitation: to question, to reimagine, and to

build anew.

Epilogue

It is customary to conclude academic works with acknowledgments of funding and

support. Regrettably, this project was undertaken without external financial assis-

tance or institutional backing. My initial, perhaps unconventional, ideas—ideas

that ultimately formed the foundation of the mathematical structures presented

herein—were often met with scepticism. I faced criticism for challenging estab-

lished paradigms, which unfortunately limited opportunities to present preliminary

versions or to discuss ansätze related to this work within academic forums. This en-

deavour was a solitary and, at times, arduous and socially painful journey spanning

over twenty-five years.

Furthermore, I wish to address the notion of mathematical “discovery.” It is my

firm belief that mathematics, like painting, music composition, or literary creation,

is an art form. It is the product of deep, logical thought and structured composi-

tion. The assertion that mathematical formulae are “discovered,” as if they exist

independently awaiting unearthing, seems to me a misapprehension. Mathematical

abstractions—especially novel ones—do not pre-exist in a Platonic realm; they are

created through intellect and insight.

As an electrical engineer, I approached this work with a sceptical perspective on

many existing physical explanations. Drawing on the analytical tools developed over

my engineering career, I sought recurring patterns that span the microscopic and

macroscopic realms. This investigation led to the invention of extensions to classical

mathematical methods and the formulation of new frameworks—most notably, the

ternary number system—whose internal consistency and expressive capacity allowed

for visual and analytic representations aligned with physical observations.

A particular challenge moving forward is the establishment of a consistent and

accessible vocabulary. The development of new mathematical and physical struc-

tures often demands a corresponding linguistic shift. However, I do not presume

to be the final arbiter of terminology. Rather, I hope this work serves as an initial

proposal, and I appeal to the physics and mathematics communities for collabora-

tive refinement. Consensus on vocabulary is essential if the R(3)SO(3) framework

is to evolve into a shared language capable of supporting further theoretical and

experimental development.

My next step is to expand this introductory work into a comprehensive book.

Yet I continue to face the practical obstacle of institutional independence: I am

not affiliated with any university or research body, a prerequisite for many public

funding mechanisms. As such, I have no alternative but to ask—if you are interested

in supporting the completion and expansion of this work in any way, information
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on how to contribute can be found at my website: https://r3so3.com/. Any

assistance, intellectual or material, would be warmly welcomed.

Despite the solitary path this project has taken, the horizon it opens is necessarily

collective. The R(3)SO(3) framework is not offered as a final doctrine, but as a

conceptual beginning—an invitation to rethink foundations, to unify what has long

been divided, and to rediscover the physical world through structures that are both

simpler and deeper. In an age where physics often leans on abstraction for its own

sake, this work aspires to restore meaning, coherence, and causality to the heart of

theory. If these ideas find resonance in others, then the effort has already begun to

succeed—not in closure, but in the possibility of dialogue, expansion, and shared

understanding.

A P P E N D I X

A Experimental Proposal: Testing Drude’s Hypothesis

In 1897, Thomson discovered the electron. Three years later, Drude proposed that

electric current arises from a fluid of free electrons drifting through an atomic lat-

tice. In 1927, Sommerfeld extended Drude’s model by incorporating Fermi–Dirac

statistics, establishing a quantum mechanical explanation for electrical conduction

in metals—a view still widely accepted.

However, observations from particle accelerators, particularly energy recovery

LINACs, raise questions about the validity of this model.

The proposed experiment is a simplified analogue of energy recovery LINACs, con-

sisting of a back-to-back accelerator and decelerator powered by isolated DC voltage

sources, as illustrated in Figure 7 (pp. 97). The isolation of the voltage sources, along

with the neutral path B–C, is central to the experiment, as it cleanly partitions the ac-

celerating and decelerating stages, eliminating any cross-coupling. The entire setup

is enclosed within magnetic and electric shielding to minimise external interference.

Two identical, isolated voltage sources (batteries B1 and B2) create opposing electric

BA DC

PA

B1 B2

p+ p+ p+ p+

J1 J2

V1 V2

. Figure 7: Apparatus to test Drude’s theory.

fields in sections A–B and C–D. Crucially, points B and C are electrically isolated, and

the potentials V1 and V2 are equal.

High-energy protons are emitted from the particle accelerator (PA) at ground

potential. On the segment PA–A, no energy exchange occurs. From A to B, the

(97)
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protons are accelerated by the field E⃗AB, gaining kinetic energy. This energy must be

drawn from the stored energy in battery B1, which is discharged by a current J1, in

accordance with energy conservation.

In section B–C, with no potential difference, the proton energy remains un-

changed.

From C to D, the decelerating field E⃗CD = −⃗EAB reduces the protons’ kinetic

energy. This lost energy recharges battery B2 via current J2, mirroring the A–B

process.

The protons exit with their initial energy, and the net energy change in the

batteries is zero: one gains, the other loses equally. The process can be sustained

indefinitely, implying that the currents J1 and J2 are also maintained indefinitely.

This outcome challenges Drude’s electron drift model. If conduction were due to

electrons physically drifting between terminals, one must explain how an infinite

number of electrons continually enter and leave two electrically isolated regions—an

impossibility in this configuration.

B Experimental Proposal: Causal or Probabilistic QM

We propose an experimental setup capable of discriminating between the Copen-

hagen interpretation of quantum mechanics and the deterministic, field-theoretic

interpretation grounded in the R(3)SO(3) framework developed in this work.

This experiment—designed to test whether quantum entanglement arises causally

or probabilistically—is inspired by the pioneering work of Ou and Mandel.2 As

illustrated in Figure 8, their setup used a Type I spontaneous parametric down-

conversion (SPDC) crystal to produce signal and idler photons, which were subse-

quently interfered at a beam splitter following a 90◦ rotation of the idler polarisation.

Bell inequality violation was observed at position B, but not at the earlier station A.

Under the R(3)SO(3) framework, however, this outcome demands reinterpre-

tation. In contrast to post-processing schemes that induce effective entanglement

2 Ou, Z.Y. and Mandel, L. (1988) “Violation of Bell’s Inequality and Classical Probability in a
Two-Photon Correlation Experiment,” Physical Review Letters, 61, pp. 50–53.

BS

|H〉

|H〉

|V 〉+90◦

|V 〉 or |H〉

|H〉 or |V 〉

Type I
SPDC

A B

Signal

IdlerPump |V 〉

Figure 8: Ou amd Mandel’s experimental setup successfully demonstrating the
violation the Bell’s inequality at position B from a single type I SPDC .
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through interference, the field-symmetric model asserts that entanglement is intrin-

sic to the SPDC process itself. The signal and idler solitons are created in an already

entangled, nilpotent field configuration within the crystal. The question is then not

whether they are entangled, but why the entanglement is not observable at position

A.

We propose that two processes are simultaneously at work: (1) the production of

entangled photon pairs via SPDC, and (2) their embedding in a coherent, linearly

polarised macroscopic field structure (pump-polarisation-aligned). In this field-

locked regime, the solitons cannot dynamically adjust their internal structure. The

linear polarisation of both photons anchors them to a shared pilot wave originating

from the pump, effectively suppressing entanglement observables at position A. Only

when the fields are jointly transformed—via both the 90◦ phase shift of the idler and

the subsequent field mixing at the beam splitter—do the solitons decouple from

their rigid alignment with the macroscopic pump field. The phase shift alone is

insufficient; it is the coherent superposition of the orthogonally polarised fields at

the beam splitter that produces a circularly structured field environment. In this

mixed-field regime, the solitons gain dynamic freedom to deform and adjust their

internal configuration. This transition enables the observables required for a Bell-

violating correlation to manifest at position B—whereas at position A, in the absence

of circularisation, no such violation is observed.

The proposed refinement of this experiment, shown in Figure 9, circumvents the

need for beam splitter interference. By introducing quarter-wave plates (QWPs) di-

rectly in the paths of the signal and idler, the fields are circularised while maintaining

optical separation. If entanglement is now observed at station B without recombi-

nation, it implies that entanglement arises from soliton structure—not quantum

superposition.

Type I
SPDC

|V 〉Pump

Signal |+H〉 |R〉

Idler |–H〉 |L〉

QWP

QWPA B

Figure 9: Schematic of the proposed experiment to distinguish field-based entanglement
from collapse-based interpretations. A vertically polarised pump photon Υ0 undergoes Type
I spontaneous parametric down-conversion, producing two linearly polarised photons: the
signal in state |+H〉 and the idler in |−H〉, differing by their solitonic rotation histories.
Quarter-wave plates (QWPs), oriented relative to each soliton’s internal polarisation frame,
convert the signal and idler into right- and left-circular states |R〉 and |L〉, respectively. To

preserve entanglement symmetry and ensure valid nilpotent alignment U+−U = 0, the optical
path lengths to the QWPs should be equalised as closely as possible to maintain temporal
coherence.
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Station A: Linearly Polarised, Field-Locked Regime

Before encountering any optical elements, both signal and idler photons remain

in linearly polarised |H〉 states. According to the R(3)SO(3) interpretation, their

solitonic structures are locked to a common origin Υ0, preserving the macroscopic

pilot wave of the pump.

Prediction: No Bell violation at detector A. Solitons remain rigid and dynamically

inert. Entanglement is latent due to preserved topological coherence.

At A: Field-locked regime ⇒ No dynamic separability ⇒ No Bell violation

Station B: Circularised, Dynamically Unlocked Regime

After passing through QWPs, the signal and idler fields transform into circular po-

larisation states |R〉 and |L〉, respectively. The solitons can now deform coherently,

adjusting their pilot wave phase relationships to satisfy the nilpotent field constraint:

U + −
U = 0.

Prediction: A Bell test will detect entanglement. Entanglement becomes dynamically

accessible via structural deformation in the circularised field.

Interpretational Significance

Under the Copenhagen interpretation, entanglement is statistical and should mani-

fest equally at stations A and B. By contrast, in the deterministic R(3)SO(3)-based

framework, entanglement is geometric and topological. It manifests only when the

solitonic structures are dynamically accessible, as made possible by circularisation.

A positive violation of the Bell inequality at station B—despite optical separation

and without post-selection—would falsify collapse-based interpretations and provide

strong evidence in favour of a soliton-guided, field-structured reality governed by

nilpotent conservation laws.

R E M A R K B.1: On Relative QWP Orientation and Soliton Frame Dependence. The QWPs

play a pivotal role in unlocking entanglement by transforming linearly polarised field-

locked solitons into circularly polarised, dynamically accessible ones. However, their

effect depends critically on the frame in which the transformation is applied.

While both photons may appear as |H〉 in the lab frame, their internal solitonic

configurations—denoted |+H〉 and |−H〉—may differ due to their rotation histo-

ries. These distinctions are invisible to conventional optics but significant in the

R(3)SO(3) formalism.

If both QWPs are aligned according to the laboratory coordinate system, they

may act asymmetrically with respect to each soliton’s internal frame, resulting in

two |L〉 states and violating nilpotent symmetry. Thus, each QWP must be oriented

relative to its corresponding soliton’s internal polarisation basis.

This ensures that the signal and idler acquire true opposite helicities and that

their entangled state satisfies the nilpotent balance U + −
U = 0, preserving field coher-

ence.
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C Principle of Relativity

We revisit the foundations of the Principle of Relativity, treating it explicitly as an

axiom, and reconstruct Einstein’s original reasoning within a mathematically rigorous

framework. We treat each section of Zur Elektrodynamik bewegter Körper as a lemma,

numbered according to the original structure, and single out those lemmas that

contain the results of particular interest. We are not going to repeat the full text,

but will instead refer to the relevant sections, extracting the necessary formulas and

passages3. In addition, we recast Die Trägheit eines Körpers von seinem Energieinhalt

abhängig as a proof of a theorem stating that "Energy equals mass multiplied by

the speed of light squared." The mathematics leads us to a conclusion that confirms

Einstein’s celebrated result, E = mc2. Continuing Einstein’s original thought process,

we next consider the reflection of the emitted light, thus opening a line of enquiry

beyond the scope of the original formulation.

A X I O M 1 : Principle of Relativity.

1. The laws by which the states of physical systems undergo change are not affected,

whether these changes of state be referred to the one or the other of two systems of

co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates with the de-

termined velocity c , whether the ray be emitted by a stationary or by a moving

body.

L E M M A 7 : Theory of Doppler’s Principle and of Aberration .

. . . the frequency ν′ of the light perceived by the observer is given by the equation

ν′ = ν1−cosφ · v/cp
1− v2/c2

.

This is Doppler’s principle for any velocities whatever. When φ = 0 the equation

assumes the perspicuous form

ν′ = ν
…

1− v/c

1+ v/c
.

L E M M A 8 : Transformation of the Energy of Light Rays. .

. . . Thus, if we call the light energy enclosed by this surface L when it is measured in In the original paper, Ein-

stein used E and E′, which

we replace here with L and

L′ for the energy of the light,

in order to maintain com-

patibility with the notation

used in the follow-up paper

Does the Inertia of a Body

Depend Upon Its Energy

Content.

the stationary system, and L′ when measured in the moving system, we obtain

L′

L
= A′2S′

A2S
= 1−cosφ · v/cp

1− v2/c2
,

and this formula, when φ= 0, simplifies into

L′

L
=
…

1− v/c

1+ v/c
.

3 The English translations of Einstein’s original 1905 German-language papers (published as
Zur Elektrodynamik bewegter Körper, in Annalen der Physik, 17:891, 1905, and Ist die Trägheit
eines Körpers von seinem Energiegehalt abhängig?, in Annalen der Physik, 18:639, 1905) both
appeared in the book The Principle of Relativity, published in 1923 by Methuen and Company,
Ltd. of London.
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C O R O L L A R Y 8 . 1 : Problems in the Optics of Moving Bodies .

All problems in the optics of moving bodies can be solved by the method here Concluding remark of § 8.

employed. What is essential is, that the electric and magnetic force of the light which

is influenced by a moving body, be transformed into a system of co-ordinates at rest

relatively to the body. By this means all problems in the optics of moving bodies will

be reduced to a series of problems in the optics of stationary bodies.

L E M M A 1 0 : Dynamics of the Slowly Accelerated Electron .

. . . We will now determine the kinetic energy of the electron. . . . we therefore obtain

W = mc2
ß

1p
1− v2/c2

−1

™
.

. . . This expression for the kinetic energy must also . . . apply to ponderable masses as

well.

T H E O R E M 1 : E = mc2.

Energy equals mass multiplied by the speed of light squared, that is E = mc2

P R O O F . Let there be a stationary body in the system (x, y, z), and let its energy—

referred to the system (x, y, z) be E0. Let the energy of the body relative to the system

(ξ,η,ζ) moving as above with the velocity v , be H0.

Let this body send out, in a direction making an angle [φ= 0] with the axis of x,

plane waves of light, of energy 1
2 L measured relatively to (x, y, z), and simultaneously

an equal quantity of light in the opposite direction. Meanwhile the body remains at

rest with respect to the system (x, y, z). The principle of energy must apply to this

process, and in fact (by the principle of relativity) with respect to both systems of

co-ordinates. If we call the energy of the body after the emission of light E1 or H1

respectively, measured relatively to the system (x, y, z) or (ξ,η,ζ) respectively, then

by employing the relation given [in Lemma 8] we obtain

E0 = E1 + 1

2
L+ 1

2
L,

H0 = H1 + 1

2
L

1− v
cp

1− v2/c2
+ 1

2
L

1+ v
cp

1− v2/c2

= H1 + Lp
1− v2/c2

.

. . . [leads to—together with Lemma 10—the profound conclusion that E = mc2.] □

This represents our present understanding of Einstein’s special theory of relativity

and, as a model, it cannot be faulted. However, from a mathematical perspective, it

constitutes only the first part of a contradiction. The second part now follows.

We proceed further in the thought experiment: In the system (ξ,η,ζ), the light

is reflected back towards the source. The energy of the body, E1 or H1—measured

relative to the system (x, y, z) or (ξ,η,ζ), respectively—remains unchanged upon

reflection. Let the energy of the light plus the body after reflection be E′
0 and H′

0 in
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the systems (x, y, z) and (ξ,η,ζ), respectively. In the system (ξ,η,ζ), the reflections

do not alter the energy content of the light, hence

H′
0 = H1 + Lp

1− v2/c2
.

Because the moving reflection induces a Doppler shift in the light, in the system

(x, y, z) we have

E′
0 = E1 + 1

2
L

1− v/c

1+ v/c
+ 1

2
L

1+ v/c

1− v/c

= E1 +L
1+ v2/c2

1− v2/c2 .

The resulting contradiction,

E0 ̸= E′
0 and H0 = H′

0,

falsifies Axiom 1. Thus, from a strictly mathematical standpoint, the special theory

of relativity is falsified via the method of reductio ad absurdum.

As G. H. Hardy wrote in A Mathematician’s Apology*: * Hardy, G.H. (2012) A

Mathematician’s Apology.

Cambridge University Pr.Reductio ad absurdum, which Euclid loved so much, is one of a math-

ematician’s finest weapons. It is a far finer gambit than any chess play:

a chess player may offer the sacrifice of a pawn or even a piece, but a

mathematician offers the game.

Dear Albert, checkmate. The game is over. It is time to reconsider why empirical

evidence supports your theories—such as mass–energy equivalence, inertial mass

increase, and time dilation—when mathematical rigour exposes internal inconsisten-

cies. A new theory is required: one that not only accounts for observational evidence

but also unifies gravitational and electrical forces, and seamlessly integrates quantum

mechanics within a coherent framework.

While the empirical successes of the special theory of relativity are undisputed,

the presence of a logical inconsistency within its mathematical formulation suggests

that it should be regarded as an effective model rather than a fully consistent theory.

In mathematics, an inconsistency demands revision; in physics, it invites refinement.

The search for a new theoretical framework is therefore not an abandonment of

Einstein’s profound insights, but a natural continuation of the scientific endeavour:

to build models that are both empirically accurate and mathematically complete.

Natural philosophy must be as free from contradiction as Nature herself.
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